Skip to main content
Log in

Clinical significance of different effects of static and pulsed electromagnetic fields on human osteoclast cultures

  • Original Article
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Electromagnetic fields are known to affect the bone metabolism by modifying some relevant physiologic cell parameters of cells, even though the underlying mechanisms are still unclear. The aim of our study was to evaluate the effect of both static magnetic fields (SMFs) of the same intensity of the one generated by spinal metal devices and pulsed electromagnetic fields (PEMFs) of the same intensity used for the management of nonunion on human osteoclasts cell culture. Primary osteoclast cells were isolated from primary human osteoclast precursors and were exposed to SMFs and to PEMFs. Morphology and tartrate-resistant acid phosphatase (TRAP) activity were evaluated in the osteoclast cultures after 7, 10, and 14 days of exposure. The SMF-exposed cells show a more differentiated phenotype and a significantly higher TRAP activity after 7 and 10 days of treatment with respect to a sham control. PEMF-exposed cells have a less-differentiated phenotype after 7 days of exposure compared with the relative sham control, while the TRAP activity shows no statistically significant differences between exposed and control cells at any observation time. Our results indicate that SMFs of the same intensity of the one generated around spinal devices can affect osteoclast differentiation and activity. Aseptic loosening around titanium implants might be due in part to an increased osteoclast activity and differentiation. PEMFs of the same intensity than the one used for the management of nonunions can affect osteoclasts phenotype after 7 days of exposure, while osteoclasts TRAP activity is not affected by this kind of electromagnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jacobs JJ, Hallab NJ, Urban RM, Wimmer MA (2006) Wear particles. J Bone Joint Surg Am 88(Suppl. 2):99–102

    Article  PubMed  Google Scholar 

  2. Denaro V, Papapietro N, Sgambato A et al (2008) Periprosthetic electrochemical corrosion of titanium and titanium-based alloys as a cause of spinal fusion failure. Spine 33(1):8–13

    Article  PubMed  Google Scholar 

  3. Denaro V, Cittadini A, Barnaba SA (2008) Static electromagnetic fields generated by corrosion currents inhibit human osteoblast differentiation. Spine 33(9):955–959

    Article  PubMed  Google Scholar 

  4. Guerkov HH, Lohmann CH, Liu Y, Dean DD, Simon BJ, Heckman JD, Schwartz Z, Boyan BD (2001) Pulsed electromagnetic fields increase growth factor release by nonunion cells. Clin Orthop Relat Res. 384:265–279

    Article  PubMed  Google Scholar 

  5. Liboff AR, Williams T Jr, Strong DM et al (1984) Time-varying magnetic fields: effect on DNA synthesis. Science 223(4638):818–820

    Article  PubMed  CAS  Google Scholar 

  6. Farndale RW, Murray JC (1985) Pulsed electromagnetic fields promote collagen production in bone marrow fibroblasts via athermal mechanisms. Calcif Tissue Int 37(2):178–182

    Article  PubMed  CAS  Google Scholar 

  7. Lee KE, Pelker RR (1985) Effect of freezing on histologic and biomechanical failure patterns in the rabbit’s capital femoral growth plate. J Orthop Res 3:514–515

    Article  PubMed  CAS  Google Scholar 

  8. Wang W, Wang Z, Zhang G, Clark CC, Brighton CT (2004) Up-regulation of chondrocyte matrix genes and products by electric fields. Clin Orthop Relat Res. 427:S163–S173

    Article  PubMed  Google Scholar 

  9. Hannay G, Leavesley D, Pearcy M (2005) Timing of pulsed electromagnetic field stimulation does not affect the promotion of bone cell development. Bioelectromagnetics 26(8):670–676

    Article  PubMed  Google Scholar 

  10. Foley KT, Mroz TE, Arnold PM, Chandler HC Jr, Dixon RA, Girasole GJ, Renkens KL Jr, Riew KD, Sasso RC, Smith RC, Tung H, Wecht DA, Whiting DM (2008) Randomized, prospective, and controlled clinical trial of pulsed electromagnetic field stimulation for cervical fusion. Spine J 8(3):436–442

    Article  PubMed  Google Scholar 

  11. Chang K, Chang WH, Tsai MT et al (2006) Pulsed electromagnetic fields accelerate apoptotic rate in osteoclasts. Connect Tissue Res 47(4):222–228

    Article  PubMed  Google Scholar 

  12. Chang K, Chang WH, Wu ML et al (2003) Effects of different intensities of extremely low frequency pulsed electromagnetic fields on formation of osteoclast-like cells. Bioelectromagnetics 24(6):431–439

    Article  PubMed  Google Scholar 

  13. Chang K, Chang WH, Huang S et al (2005) Pulsed electromagnetic fields stimulation affects osteoclast formation by modulation of osteoprotegerin, RANK ligand and macrophage colony-stimulating factor. J Orthop Res 23(6):1308–1314

    PubMed  CAS  Google Scholar 

  14. Shankar VS, Simon BJ, Bax CM et al (1998) Effects of electromagnetic stimulation on the functional responsiveness of isolated rat osteoclasts. J Cell Physiol 176(3):537–544

    Article  PubMed  CAS  Google Scholar 

  15. Roodman GD (1999) Cell biology of the osteoclast. Exp Hematol 27(8):1229–1241

    Article  PubMed  CAS  Google Scholar 

  16. Kalbacova M, Roessler S, Hempel U, Tsaryk R, Peters K, Scharnweber D, Kirkpatrick JC, Dieter P (2007) The effect of electrochemically simulated titanium cathodic corrosion products on ROS production and metabolic activity of osteoblasts and monocytes/macrophages. Biomaterials 28(22):3263–3272

    Article  PubMed  CAS  Google Scholar 

  17. Punt IM, Cleutjens JP, de Bruin T, Willems PC, Kurtz SM, van Rhijn LW, Schurink GW, van Ooij A (2009) Periprosthetic tissue reactions observed at revision of total intervertebral disc arthroplasty. Biomaterials 30(11):2079–2084

    Article  PubMed  CAS  Google Scholar 

  18. Chambers TJ (1985) The pathobiology of the osteoclast. J Clin Pathol 38:241–252

    Article  PubMed  CAS  Google Scholar 

  19. Hosokawa Y, Sakakura Y, Tanaka L et al (2007) Effects of local and whole body irradiation on appearance of osteoclasts during wound healing of tooth extraction sockets in rats. J Radiat Res 48(4):273–280

    Article  PubMed  Google Scholar 

  20. Komine M et al (2001) Tumor necrosis factor alfa cooperates with receptor activator of nuclear factor kbeta ligand in generation of osteoclast in stromal cell-depleted rat bone marrow cell culture. Bone 28(5):474–483

    Article  PubMed  CAS  Google Scholar 

  21. Hideyuki O, Rie O, Naohide T et al (2006) Effects of a moderate-intensity static magnetic field onVEGF-A stimulated endothelial capillarytubule formation invitro. Bioelectromagnetics 27:628–640

    Article  Google Scholar 

  22. Yu M, Moreno JL, Stains JP, Keegan AD (2009) Complex regulation of tartrate-resistant acid phosphatase (TRAP) expression by interleukin 4(IL-4): IL-4 indirectly suppresses receptor activator of NF-kappaB ligand (RANKL)-mediated TRAP expression but modestly induces its expression directly. J Biol Chem 284(47):32968–32979

    Article  PubMed  CAS  Google Scholar 

  23. Taylor KF, Inoue N, Rafiee B et al (2006) Effect of pulsed electromagnetic fields on maturation of regenerate bone in a rabbit limb lengthening model. J Orthop Res 24(1):2–10

    Article  PubMed  Google Scholar 

  24. Bose B (2001) Outcomes after posterolateral lumbar fusion with instrumentation in patients treated with adjunctive pulsed electromagnetic field stimulation. Adv Ther 18:12–20

    Article  PubMed  CAS  Google Scholar 

  25. Mooney V (1990) A randomized double-blind prospective study of the efficacy of pulsed electromagnetic fields for interbody lumbar fusions. Spine 15:708–712

    Article  PubMed  CAS  Google Scholar 

  26. Silver RA (2001) Application of pulsed electromagnetic fields (PEMF) after lumbar interbody or posterolateral spinal fusion surgery in a heterogenous patient population. J Neurol Orthop Med Surg 21:51–62

    Google Scholar 

  27. Sul AR, Park SN, Suh H (2006) Effects of sinusoidal electromagnetic field on structure and function of different kinds of cell lines. Yonsei Med J 47(6):852–861

    Article  PubMed  Google Scholar 

  28. Selvamurugan N, Kwok S, Vasilov A, Jefcoat SC, Partridge NC (2007) Effects of BMP-2 and pulsed electromagnetic field (PEMF) on rat primary osteoblastic cell proliferation and gene expression. J Orthop Res 25(9):1213–1220

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Ruzzini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnaba, S.A., Ruzzini, L., Di Martino, A. et al. Clinical significance of different effects of static and pulsed electromagnetic fields on human osteoclast cultures. Rheumatol Int 32, 1025–1031 (2012). https://doi.org/10.1007/s00296-010-1724-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-010-1724-7

Keywords

Navigation