Skip to main content

Advertisement

Log in

Elevated serum heme oxygenase-1 and insulin-like growth factor-1 levels in patients with Henoch-Schonlein purpura

  • Original Article
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate the levels of heme oxygenase-1 (HO-1), insulin-like growth factor-1 (IGF-1) and oxidative stress parameters including malondialdehyde (MDA), total antioxidant capacity (T-AOC) and the activities of total superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), catalase (CAT) for exploring the correlations between these biological indexes and the clinical manifestations in Henoch-Schonlein purpura (HSP) patients. 36 patients with different phases of HSP and 16 age- and sex-matched controls were enrolled. MDA level, T-AOC and the activities of SOD, GSH-PX and CAT were measured by spectrophotometry. HO-1 and IGF-1 levels were detected by enzyme-linked immunosorbent assay. Significant higher MDA level, lower T-AOC, SOD, GSH-PX activities were shown in active phase of HSP, respectively, compared with those in early resolution phase of HSP (p < 0.001, <0.001, 0.017, <0.001, respectively) and the control subjects (p < 0.001, <0.001, 0.01, 0.008, respectively). HO-1 (both p < 0.001) and IGF-1 (p < 0.001, 0.009, respectively) levels in active phase and early resolution phase of HSP were significantly higher than those in normal controls. The changes of HO-1 and IGF-1 levels were coincident with overall clinical scores (r = 0.71, p < 0.001; r = 0.615, p < 0.001, respectively). The HO-1 level was found as positive correlation with MDA levels (r = 0.395, p = 0.017), but negative correlations with T-AOC (r = −0.409, p = 0.013) and SOD activities (r = −0.352, p = 0.035). HO-1 and IGF-1 were possibly involved in the pathogenesis of HSP; they could be the marker for evaluating the severity of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Egan CA, Taylor TB, Meyer LJ, Petersen MJ, Zone JJ (1999) IgA1 is the major IgA subclass in cutaneous blood vessels in Henoch-Schönlein purpura. Br J Dermatol 141:859–862

    Article  CAS  PubMed  Google Scholar 

  2. Kawakami T, Watabe H, Mizoguchi M, Soma Y (2006) Elevated serum IgA anticardiolipin antibody levels in adult Henoch-Schönlein purpura. Br J Dermatol 155:983–987

    Article  CAS  PubMed  Google Scholar 

  3. Pawlak K, Naumnik B, Brzósko S, Pawlak D, Myśliwiec M (2004) Oxidative stress—a link between endothelial injury, coagulation activation, and atherosclerosis in haemodialysis patients. Am J Nephrol 24:154–161

    Article  CAS  PubMed  Google Scholar 

  4. Manning RD Jr, Meng S, Tian N (2003) Renal and vascular oxidative stress and salt-sensitivity of arterial pressure. Acta Physiol Scand 179:243–250

    Article  CAS  PubMed  Google Scholar 

  5. Ece A, Kelekçi S, Kocamaz H, Hekimoğlu A, Balik H, Yolbaş I et al (2008) Antioxidant enzyme activities, lipid peroxidation, and total antioxidant status in children with Henoch-Schönlein purpura. Clin Rheumatol 27:163–169

    Article  PubMed  Google Scholar 

  6. Janero DR (1990) Malondialdehyde and thiobarbituric-acid reactivity as diagnostic indices of lipid peroxidation, and peroxidative tissue injury. Free Radic Biol Med 9:515–540

    Article  CAS  PubMed  Google Scholar 

  7. Maxwell SR, Dietrich T, Chapple IL (2006) Prediction of serum total antioxidant activity from the concentration of individual serum antioxidants. Clin Chim Acta 372:188–194

    Article  CAS  PubMed  Google Scholar 

  8. Sukhanov S, Higashi Y, Shai SY, Vaughn C, Mohler J, Yet Li et al (2007) IGF-1 reduces inflammatory responses, suppresses oxidative stress, and decreases atherosclerosis progression in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 27:2684–2690

    Article  CAS  PubMed  Google Scholar 

  9. Csiszar A, Labinskyy N, Perez V, Recchia FA, Podlutsky A, Mukhopadhyay P et al (2008) Endothelial function and vascular oxidative stress in long-lived GH/IGF-deficient Ames dwarf mice. Am J Physiol Heart Circ Physiol 295:1882–1894

    Article  Google Scholar 

  10. Wilson SJ, Keenan AK (2003) Role of hemin in the modulation of H2O2-mediated endothelial cell injury. Vascul Pharmacol 40:109–118

    Article  CAS  PubMed  Google Scholar 

  11. True AL, Olive M, Boehm M, San H, Westrick RJ, Raghavachari N et al (2007) Heme oxygenase-1 deficiency accelerates formation of arterial thrombosis through oxidative damage to the endothelium, which is rescued by inhaled carbon monoxide. Circ Res 101:893–901

    Article  CAS  PubMed  Google Scholar 

  12. Wang LJ, Lee TS, Lee FY, Pai RC, Chau LY (1998) Expression of heme oxygenase-1 in atherosclerotic lesions. Am J Pathol 152:711–720

    CAS  PubMed  Google Scholar 

  13. Ishikawa K, Sugawara D, Goto J, Watanabe Y, Kawamura K, Shiomi M et al (2001) Heme oxygenase-1 inhibits atherogenesis in Watanabe heritable hyperlipidemic rabbits. Circulation 104:1831–1836

    Article  CAS  PubMed  Google Scholar 

  14. Ishikawa K, Sugawara D, Wang XP, Suzuki K, Itabe H, Maruyama Y et al (2001) Heme oxygenase-1 inhibits atherosclerotic lesion formation in LDL-receptor knockout mice. Circ Res 88:506–512

    CAS  PubMed  Google Scholar 

  15. Juul A, Scheike T, Davidsen M, Gyllenborg J, Jørgensen T (2002) Low serum insulin-like growth factor I is associated with increased risk of ischemic heart disease: a population-based case–control study. Circulation 106:939–944

    Article  CAS  PubMed  Google Scholar 

  16. Späh F (2008) Inflammation in atherosclerosis and psoriasis: common pathogenic mechanisms and the potential for an integrated treatment approach. Br J Dermatol 159:10–17

    Article  PubMed  Google Scholar 

  17. Wu SH, Liao PY, Yin PL, Zhang YM, Dong L (2009) Inverse temporal changes of lipoxin A4 and leukotrienes in children with Henoch-Schönlein purpura. Prostaglandins Leukot Essent Fatty Acids 80:177–183

    Article  CAS  PubMed  Google Scholar 

  18. Yildiz B, Kural N, Aydin B, Colak O (2008) Increased serum levels of insulin-like growth factor (IGF)-1 and IGF-binding protein-3 in Henoch-Schonlein purpura. Tohoku J Exp Med 214:333–340

    Article  CAS  PubMed  Google Scholar 

  19. Mills JA, Michel BA, Bloch DA, Calabrese LH, Hunder GG, Arend WP et al (1990) The American College of Rheumatology 1990 criteria for the classification of Henoch-Schönlein purpura. Arthritis Rheum 33:1114–1121

    Article  CAS  PubMed  Google Scholar 

  20. Huang DC, Yang YH, Lin YT, Chiang BL (2003) Cyclosporin A therapy for steroid-dependent Henoch-Schönlein purpura. J Microbiol Immunol Infect 36:61–64

    PubMed  Google Scholar 

  21. Fessatou S, Nicolaidou P, Gourgiotis D, Georgouli H, Douros K, Moustaki M et al (2008) Endothelin 1 levels in relation to clinical presentation and outcome of Henoch Schonlein purpura. BMC Pediatr 8:33

    Article  CAS  PubMed  Google Scholar 

  22. Yang YH, Wang SJ, Chuang YH, Lin YT, Chiang BL (2002) The level of IgA antibodies to human umbilical vein endothelial cells can be enhanced by TNF-alpha treatment in children with Henoch-Schönlein purpura. Clin Exp Immunol 130:352–357

    Article  CAS  PubMed  Google Scholar 

  23. Buyan N, Erbaş D, Akkök N, Oz E, Biberoğlu G, Hasanoğlu E (1998) Role of free oxygen radicals and prostanoids in the pathogenesis of Henoch-Schönlein Purpura. Prostaglandins Leukot Essent Fatty Acids 59:181–184

    Article  CAS  PubMed  Google Scholar 

  24. Erdoğan O, Oner A, Aydin A, Işimer A, Demircin G, Bülbül M (2003) Effect of vitamin E treatment on the oxidative damage occurring in Henoch-Schönlein purpura. Acta Paediatr 92:546–550

    Article  PubMed  Google Scholar 

  25. Huang Y, Wu L, Xu C, XuYang B, Wang R (2006) Increased HO-1 expression and decreased iNOS expression in the hippocampus from adult spontaneously hypertensive rats. Cell Biochem Biophys 46:35–42

    Article  CAS  PubMed  Google Scholar 

  26. Kirino Y, Takeno M, Iwasaki M, Ueda A, Ohno S, Shirai A et al (2005) Increased serum HO-1 in hemophagocytic syndrome and adult-onset Still’s disease: use in the differential diagnosis of hyperferritinemia. Arthritis Res Ther 7:616–624

    Article  Google Scholar 

  27. Carraway MS, Ghio AJ, Taylor JL, Piantadosi CA (1998) Induction of ferritin and heme oxygenase-1 by endotoxin in the lung. Am J Physiol 275:L583–L592

    CAS  PubMed  Google Scholar 

  28. Panchenko MV, Farber HW, Korn JH (2000) Induction of heme oxygenase-1 by hypoxia and free radicals in human dermal fibroblasts. Am J Physiol Cell Physiol 278:C92–C101

    CAS  PubMed  Google Scholar 

  29. Yakar S, Liu JL, Le Roith D (2000) The growth hormone/insulin-like growth factor-I system: implications for organ growth and development. Pediatr Nephrol 14:544–549

    Article  CAS  PubMed  Google Scholar 

  30. Conti E, Carrozza C, Capoluongo E, Volpe M, Crea F, Zuppi C et al (2004) Insulin-like growth factor-1 as a vascular protective factor. Circulation 110:2260–2265

    Article  PubMed  Google Scholar 

  31. Hamaguchi Y, Fujimoto M, Matsushita T, Hasegawa M, Takehara K, Sato S (2008) Elevated serum insulin-like growth factor (IGF-1) and IGF binding protein-3 levels in patients with systemic sclerosis: possible role in development of fibrosis. J Rheumatol 35:2363–2371

    Article  CAS  PubMed  Google Scholar 

  32. Wu BJ, Kathir K, Witting PK, Beck K, Choy K, Li C et al (2006) Antioxidants protect from atherosclerosis by a heme oxygenase-1 pathway that is independent of free radical scavenging. J Exp Med 203:1117–1127

    Article  CAS  PubMed  Google Scholar 

  33. Hsu M, Muchova L, Morioka I, Wong RJ, Schröder H, Stevenson DK (2006) Tissue-specific effects of statins on the expression of heme oxygenase-1 in vivo. Biochem Biophys Res Commun 343:738–744

    Article  CAS  PubMed  Google Scholar 

  34. Grosser N, Hemmerle A, Berndt G, Erdmann K, Hinkelmann U, Schürger S et al (2004) The antioxidant defense protein heme oxygenase 1 is a novel target for statins in endothelial cells. Free Radic Biol Med 37:2064–2071

    Article  CAS  PubMed  Google Scholar 

  35. Conti E, Musumeci MB, Assenza GE, Quarta G, Autore C, Volpe M (2008) Recombinant human insulin-like growth factor-1: a new cardiovascular disease treatment option? Cardiovasc Hematol Agents Med Chem 6:258–271

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zai-pei Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, T., Guo, Zp., Zhang, Yh. et al. Elevated serum heme oxygenase-1 and insulin-like growth factor-1 levels in patients with Henoch-Schonlein purpura. Rheumatol Int 31, 321–326 (2011). https://doi.org/10.1007/s00296-009-1254-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-009-1254-3

Keywords

Navigation