Rheumatology International

, Volume 27, Issue 9, pp 793–806 | Cite as

Evidence-based review of biologic markers as indicators of disease progression and remission in rheumatoid arthritis

  • Paul EmeryEmail author
  • Cem Gabay
  • Maarten Kraan
  • Juan Gomez-Reino


Rheumatoid arthritis (RA) is a chronic, immune-mediated inflammatory disease characterised by inflammation resulting in structural joint damage and functional disability. Tumour necrosis factor-alpha (TNFα) is a pivotal mediator and driver of inflammation in RA. Inflammation is closely related to the production of C-reactive protein (CRP), and a close correlation exists between serum CRP and TNFα levels. CRP levels are therefore a convenient, objective biomarker of disease activity. CRP correlates closely with changes in inflammation/disease activity, radiological damage and progression and functional disability. Identification of TNFα as a driver of RA progression has led to the introduction of TNFα-blocking agents and, subsequently, improvement of disease management. TNFα-blocking agents provide rapid, profound and sustained suppression of disease activity in correspondence with a marked reduction in CRP levels. A reduction in CRP level correlates closely with the positive clinical response to TNFα-blocking therapy. Thus, CRP levels can be used to predict, assess and monitor response to treatment with TNFα-blocking agents, and may be helpful in determining the optimal TNFα-blocker dosage. Given the close correlation between inflammation and disease progression and the relation between inflammation and CRP, the latter, if used effectively in clinical practice, may be means to identify patients likely to progress rapidly and who require intensive anti-TNFα therapy. The purpose of this review is to identify how CRP levels may be useful for monitoring the effect of therapy on halting disease progression and why monitoring CRP levels at baseline and after treatment should become a routine part of clinical practice.


Rheumatoid arthritis C-reactive protein Tumour necrosis factor α Inflammation 



Editorial support for the development of this publication was provided by Schering-Plough Corporation.


  1. 1.
    Williams JP, Meyers JA (2002) Immune-mediated inflammatory disorders (I.M.I.D.s): the economic and clinical costs. Am J Manag Care 8:S664–S681PubMedGoogle Scholar
  2. 2.
    Choy EH, Panayi GS (2001) Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med 344:907–916PubMedCrossRefGoogle Scholar
  3. 3.
    Goldenberg MM (1999) Etanercept, a novel drug for the treatment of patients with severe, active rheumatoid arthritis. Clin Ther 21:75–87PubMedCrossRefGoogle Scholar
  4. 4.
    Brennan FM, Chantry D, Jackson A, Maini R, Feldmann M (1989) Inhibitory effect of TNF alpha antibodies on synovial cell interleukin–1 production in rheumatoid arthritis. Lancet 2:244–247PubMedCrossRefGoogle Scholar
  5. 5.
    Gabay C, Kushner I (1999) Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 340:448–454PubMedCrossRefGoogle Scholar
  6. 6.
    Van der Heijde DM (1995) Joint erosions and patients with early rheumatoid arthritis. Br J Rheumatol 34(Suppl 2):74–78PubMedGoogle Scholar
  7. 7.
    Morel J, Combe B (2005) How to predict prognosis in early rheumatoid arthritis. Best Pract Res Clin Rheumatol 19:137–146PubMedCrossRefGoogle Scholar
  8. 8.
    Machold KP, Stamm TA, Eberl GJ, Nell VK, Dunky A, Uffmann M, et al (2002) Very recent onset arthritis–clinical, laboratory, and radiological findings during the first year of disease. J Rheumatol 29:2278–2287PubMedGoogle Scholar
  9. 9.
    Van der Horst-Bruinsma IE, Speyer I, Visser H, Breedveld FC, Hazes JM (1998) Diagnosis and course of early-onset arthritis: results of a special early arthritis clinic compared to routine patient care. Br J Rheumatol 37:1084–1088PubMedCrossRefGoogle Scholar
  10. 10.
    Sokka T (2003) Work disability in early rheumatoid arthritis. Clin Exp Rheumatol 21(5 Suppl 31):S71–S74PubMedGoogle Scholar
  11. 11.
    Drossaers-Bakker KW, de Buck M, van Zeben D, Zwinderman AH, Breedveld FC, Hazes JM (1999) Long-term course and outcome of functional capacity in rheumatoid arthritis. Arthritis Rheum 42:1854–1860PubMedCrossRefGoogle Scholar
  12. 12.
    Drossaers-Bakker KW, Kroon HM, Zwinderman AH, Breedveld FC, Hazes JMW (2000) Radiographic damage of large joints in long-term rheumatoid arthritis and its relation to function. Rheumatology 39:998–1003PubMedCrossRefGoogle Scholar
  13. 13.
    Wolfe F (2000) A reappraisal of HAQ disability in rheumatoid arthritis. Arthritis Rheum 43:2751–2761PubMedCrossRefGoogle Scholar
  14. 14.
    Scott DL, Pugner K, Kaarela K, Doyle DV, Woolf A, Holmes J, et al (2000) The links between joint damage and disability in rheumatoid arthritis. Rheumatology 39:122–132PubMedCrossRefGoogle Scholar
  15. 15.
    Kuper HH, van Leeuwen MA, van Riel PL, Prevoo ML, Houtman PM, Lolkema WF, et al (1997) Radiographic damage in large joints in early rheumatoid arthritis: relationship with radiographic damage in hands and feet, disease activity, and physical disability. Br J Rheumatol 36:855–860PubMedCrossRefGoogle Scholar
  16. 16.
    St Clair EW, van der Heijde DM, Smolen JS, Maini RN, Bathon JM, Emery P, et al Active-Controlled Study of Patients Receiving Infliximab for the Treatment of Rheumatoid Arthritis of Early Onset Study Group (2004) Combination of infliximab and methotrexate therapy for early rheumatoid arthritis. Arthritis Rheum 50:3432–3443Google Scholar
  17. 17.
    Stenger AA, van Leeuwen MA, Houtman PM, Bruyn GA, Speerstra F, Barendsen BC, et al (1998) Early effective suppression of inflammation in rheumatoid arthritis reduces radiographic progression. Br J Rheumatol 37:1157–1163PubMedCrossRefGoogle Scholar
  18. 18.
    Lipsky PE, van der Heijde DM, St Clair EW, Furst DE, Breedveld FC, Kalden JR, et al Anti-Tumor Necrosis Factor Trial in Rheumatoid Arthritis with Concomitant Therapy Study Group (2000) Infliximab and methotrexate in the treatment of rheumatoid arthritis. N Engl J Med 343:1594–1602Google Scholar
  19. 19.
    Bathon JM, Martin RW, Fleischmann RM, Tesser JR, Schiff MH, Keystone EC, et al (2000) A comparison of etanercept and methotrexate in patients with early rheumatoid arthritis. N Engl J Med 343:1586–1593PubMedCrossRefGoogle Scholar
  20. 20.
    Boers M, Kostense PJ, Verhoeven AC, van der Linden S; COBRA Trial Group. Combinatietherapie Bij Reumatoide Artritis (2001) Inflammation and damage in an individual joint predict further damage in that joint in patients with early rheumatoid arthritis. Arthritis Rheum 44:2242–2246PubMedCrossRefGoogle Scholar
  21. 21.
    Jenkins JK, Hardy KJ, McMurray RW (2002) The pathogenesis of rheumatoid arthritis: a guide to therapy. Am J Med Sci 323:171–180PubMedCrossRefGoogle Scholar
  22. 22.
    Buch MH, Seto Y, Bingham SJ, Bejarano V, Bryer D, White J, et al (2005) C-reactive protein as a predictor of infliximab treatment outcome in patients with rheumatoid arthritis. Arthritis Rheum 52:42–48PubMedCrossRefGoogle Scholar
  23. 23.
    Kraan MC, Versendaal H, Jonker M, Bresnihan B, Post WJ, Hart BA, et al (1998) Asymptomatic synovitis precedes clinically manifest arthritis. Arthritis Rheum 41:1481–1488PubMedCrossRefGoogle Scholar
  24. 24.
    Tak PP, Bresnihan B (2000) The pathogenesis and prevention of joint damage in rheumatoid arthritis: advances from synovial biopsy and tissue analysis. Arthritis Rheum 43:2619–2633PubMedCrossRefGoogle Scholar
  25. 25.
    Wolbink GJ, Brouwer MC, Buysmann S, ten Berge IJ, Hack CE (1996) CRP-mediated activation of complement in vivo. J Immunol 157:473–479PubMedGoogle Scholar
  26. 26.
    Molenaar ET, Voskuyl AE, Familian A, van Mierlo GJ, Dijkmans BA, Hack CE, et al (2001) Complement activation in patients with rheumatoid arthritis mediated in part by C-reactive protein. Arthritis Rheum 44:997–1002PubMedCrossRefGoogle Scholar
  27. 27.
    Hack CE, Wolbink GJ, Schalkwijk C, Speijer H, Hermens WT, van den Bosch H, et al (1997) A role for secretory phospholipase A2 and C-reactive protein in the removal of injured cells. Immunol Today 18:111–115PubMedCrossRefGoogle Scholar
  28. 28.
    Familian A, Voskuyl AE, van Mierlo GJ, Heijst HA, Twisk JW, Dijkmans BA, et al (2005) Infliximab treatment reduces complement activation in patients with rheumatoid arthritis. Ann Rheum Dis 64:1003–1008PubMedCrossRefGoogle Scholar
  29. 29.
    Jiang S, Xia D, Samols D (2006) Expression of rabbit C-reactive protein in transgenic mice inhibits development of antigen-induced arthritis. Scand J Rheumatol 35:351–355PubMedCrossRefGoogle Scholar
  30. 30.
    Sheldon J (2004) Laboratory testing in autoimmune rheumatic diseases. Best Pract Res Clin Rheumatol 18:249–269PubMedGoogle Scholar
  31. 31.
    Nakamura RM (2000) Progress in the use of biochemical and biological markers for evaluation of rheumatoid arthritis. J Clin Lab Anal 14:305–313PubMedCrossRefGoogle Scholar
  32. 32.
    Mallya RK, de Beer FC, Berry H, Hamilton ED, Mace BE, Pepys MB (1982) Correlation of clinical parameters of disease activity in rheumatoid arthritis with serum concentration of C-reactive protein and erythrocyte sedimentation rate. J Rheumatol 9:224–228PubMedGoogle Scholar
  33. 33.
    American College of Rheumatology Subcommittee on Rheumatoid Arthritis Guidelines (2002) Guidelines for the management of rheumatoid arthritis: 2002 update. Arthritis Rheum 46:328–426CrossRefGoogle Scholar
  34. 34.
    Prevoo ML, van’t Hof MA, Kuper HH, van Leeuwen MA, van de Putte LB, van Riel PL (1995) Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum 38:44–48PubMedCrossRefGoogle Scholar
  35. 35.
    Wolfe F (1997) Comparative usefulness of C-reactive protein and erythrocyte sedimentation rate in patients with rheumatoid arthritis. J Rheumatol 24:1477–1485PubMedGoogle Scholar
  36. 36.
    Devlin J, Gough A, Huissoon A, Perkins P, Holder R, Reece R, et al (1997) The acute phase and function in early rheumatoid arthritis. C-reactive protein levels correlate with functional outcome. J Rheumatol 24:9–13PubMedGoogle Scholar
  37. 37.
    Jansen LM, van Schaardenburg D, van der Horst-Bruinsma IE, Bezemer PD, Dijkmans BA (2000) Predictors of functional status in patients with early rheumatoid arthritis. Ann Rheum Dis 59:223–226PubMedCrossRefGoogle Scholar
  38. 38.
    Jansen LM, van der Horst-Bruinsma IE, van Schaardenburg D, Bezemer PD, Dijkmans BA (2001) Predictors of radiographic joint damage in patients with early rheumatoid arthritis. Ann Rheum Dis 60:924–927PubMedCrossRefGoogle Scholar
  39. 39.
    Matsuno H, Yudoh K, Nakazawa F, Koizumi F (2002) Relationship between histological findings and clinical findings in rheumatoid arthritis. Pathol Int 52:527–533PubMedCrossRefGoogle Scholar
  40. 40.
    Van Leeuwen MA, van der Heijde DM, van Rijswijk MH, Houtman PM, van Riel PL, van de Putte LB, et al (1994) Interrelationship of outcome measures and process variables in early rheumatoid arthritis. A comparison of radiologic damage, physical disability, joint counts, and acute phase reactants. J Rheumatol 21:425–429PubMedGoogle Scholar
  41. 41.
    Plant MJ, Williams AL, O’Sullivan MM, Lewis PA, Coles EC, Jessop JD (2000) Relationship between time-integrated C-reactive protein levels and radiological progression in patients with rheumatoid arthritis. Arthritis Rheum 43:1473–1477PubMedCrossRefGoogle Scholar
  42. 42.
    Pincus T, Sokka T (2005) Complexities in the quantitative assessment of patients with rheumatic diseases in clinical trials and clinical care. Clin Exp Rheumatol 23(5 Suppl 39):S1–S9PubMedGoogle Scholar
  43. 43.
    Dessein PH, Joffe BI, Stanwix AE (2004) High sensitivity C-reactive protein as a disease activity marker in rheumatoid arthritis. J Rheumatol 31:1095–1097PubMedGoogle Scholar
  44. 44.
    Yildirim K, Karatay S, Melikoglu MA, Gureser G, Ugur M, Senel K. Associations between acute phase reactant levels and disease activity score (DAS28) in patients with rheumatoid arthritis (2004) Ann Clin Lab Sci 34:423–426Google Scholar
  45. 45.
    Skogh T, Gustafsson D, Kjellberg M, Husberg M (2003) Twenty eight joint count disease activity score in recent onset rheumatoid arthritis using C reactive protein instead of erythrocyte sedimentation rate. Ann Rheum Dis 62:681–682PubMedCrossRefGoogle Scholar
  46. 46.
    Soubrier M, Dougados M (2005) Selecting criteria for monitoring patients with rheumatoid arthritis. Joint Bone Spine 72:129–134PubMedCrossRefGoogle Scholar
  47. 47.
    Van Leeuwen MA, van Rijswijk MH, van der Heijde DM, Te Meerman GJ, van Riel PL, Houtman PM, et al (1993) The acute-phase response in relation to radiographic progression in early rheumatoid arthritis: a prospective study during the first three years of the disease. Br J Rheumatol 32(Suppl 3):9–13PubMedGoogle Scholar
  48. 48.
    Larsen A (1988) The relation of radiographic changes to serum acute-phase proteins and rheumatoid factor in 200 patients with rheumatoid arthritis. Scand J Rheumatol 17:123–129PubMedGoogle Scholar
  49. 49.
    Garnero P, Delmas PD (2004) Noninvasive techniques for assessing skeletal changes in inflammatory arthritis: bone biomarkers. Curr Opin Rheumatol 16:428–434PubMedCrossRefGoogle Scholar
  50. 50.
    Garnero P, Geusens P, Landewe R (2003) Biochemical markers of joint turnover in early rheumatoid arthritis. Clin Exp Rheumatol 21(5 Suppl 31):S54–S58PubMedGoogle Scholar
  51. 51.
    Nielen MM, van Schaardenburg D, Reesink HW, Twisk JW, van de Stadt RJ, van der Horst-Bruinsma IE, et al (2006) Simultaneous development of acute phase response and autoantibodies in preclinical rheumatoid arthritis. Ann Rheum Dis 65:535–537PubMedCrossRefGoogle Scholar
  52. 52.
    Machold KP, Stamm TA, Nell VP, Pflugbeil S, Aletaha D, Steiner G, et al (2007) Very recent onset rheumatoid arthritis: clinical and serological patient characteristics associated with radiographic progression over the first years of disease. Rheumatology (Oxford) 46:342–349CrossRefGoogle Scholar
  53. 53.
    De Rycke L, Verhelst X, Kruithof E, Van den Bosch F, Hoffman IE, Veys EM, et al (2005) Rheumatoid factor, but not anti-cyclic citrullinated peptide antibodies, is modulated by infliximab treatment in rheumatoid arthritis. Ann Rheum Dis 64:299–302PubMedCrossRefGoogle Scholar
  54. 54.
    Åman S, Paimela L, Leirisalo-Repo M, Risteli J, Kautiainen H, Helve T, et al (2000) Prediction of disease progression in early rheumatoid arthritis by ICTP, RF and CRP. A comparative 3-year follow-up study. Rheumatology 39:1009–1013PubMedCrossRefGoogle Scholar
  55. 55.
    Van Leeuwen MA, van Rijswijk MH, Sluiter WJ, van Riel PL, Kuper IH, van de Putte LB, et al (1997) Individual relationship between progression of radiological damage and the acute phase response in early rheumatoid arthritis. Towards development of a decision support system. J Rheumatol 24:20–27PubMedGoogle Scholar
  56. 56.
    Smolen JS, Van Der Heijde DM, St Clair EW, Emery P, Bathon JM, Keystone E, et al; Active-Controlled Study of Patients Receiving Infliximab for the Treatment of Rheumatoid Arthritis of Early Onset (ASPIRE) Study Group (2006) Predictors of joint damage in patients with early rheumatoid arthritis treated with high-dose methotrexate with or without concomitant infliximab. Arthritis Rheum 54:702–710Google Scholar
  57. 57.
    Larsen A (1995) How to apply Larsen score in evaluating radiographs of rheumatoid arthritis in long-term studies. J Rheumatol 22:1974–1975PubMedGoogle Scholar
  58. 58.
    Enbrel® (2006) Prescribing information. Immunex Corporation, Thousand OaksGoogle Scholar
  59. 59.
    Remicade® (2006) Prescribing information. Centocor Inc., MalvernGoogle Scholar
  60. 60.
    Humira® (2006) Prescribing information. Abbott Laboratories, North ChicagoGoogle Scholar
  61. 61.
    Furst DE, Breedveld FC, Kalden JR, Smolen JS, Burmester GR, Dougados M, et al (2003) Updated consensus statement on biological agents for the treatment of rheumatoid arthritis and other immune mediated inflammatory diseases. Ann Rheum Dis 62(Suppl 2):ii2–ii9PubMedGoogle Scholar
  62. 62.
    Weinblatt ME, Kremer JM, Bankhurst AD, Bulpitt KJ, Fleischmann RM, Fox RI, et al (1999) A trial of etanercept, a recombinant tumor necrosis factor receptor:Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. N Engl J Med 340:253–259PubMedCrossRefGoogle Scholar
  63. 63.
    Moreland LW, Schiff MH, Baumgartner SW, Tindall EA, Fleischmann RM, Bulpitt KJ, et al (1999) Etanercept in rheumatoid arthritis. A randomized, controlled trial. Ann Intern Med 130:478–486PubMedGoogle Scholar
  64. 64.
    Maini R, St Clair EW, Breedveld F, Furst D, Kalden J, Weisman M, et al (1999) Infliximab (chimeric anti-tumour necrosis factor α monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. Lancet 354:1932–1939PubMedCrossRefGoogle Scholar
  65. 65.
    Weinblatt ME, Keystone EC, Furst DE, Moreland LW, Weisman MH, Birbara CA, et al (2003) Adalimumab, a fully human anti-tumor necrosis factor α monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum 48:35–45PubMedCrossRefGoogle Scholar
  66. 66.
    Smolen JS, Han C, Bala M, Maini RN, Kalden JR, van der Heijde D, et al; ATTRACT Study Group (2005) Evidence of radiographic benefit of treatment with infliximab plus methotrexate in rheumatoid arthritis patients who had no clinical improvement. Arthritis Rheum 52:1020–1030Google Scholar
  67. 67.
    Smolen JS, Han C, Van Der Heijde D, Emery P, Bathon JM, Keystone E, et al (2006) Infliximab treatment maintains employability in patients with early rheumatoid arthritis. Arthritis Rheum 54:716–722PubMedCrossRefGoogle Scholar
  68. 68.
    Quinn MA, Conaghan PG, O’Connor PJ, Karim Z, Greenstein A, Brown A, et al (2005) Very early treatment with infliximab in addition to methotrexate in early, poor-prognosis rheumatoid arthritis reduces magnetic resonance imaging evidence of synovitis and damage, with sustained benefit after infliximab withdrawal: results from a twelve-month randomized, double-blind, placebo-controlled trial. Arthritis Rheum 52:27–35PubMedCrossRefGoogle Scholar
  69. 69.
    Macias I, Garcia-Perez S, Ruiz-Tudela M, Medina F, Chozas N, Giron-Gonzalez JA (2005) Modification of pro- and antiinflammatory cytokines and vascular-related molecules by tumor necrosis factor-α blockade in patients with rheumatoid arthritis. J Rheumatol 32:2102–2108PubMedGoogle Scholar
  70. 70.
    Haraoui B (2005) Differentiating the efficacy of the tumor necrosis factor inhibitors. Semin Arthritis Rheum 34(Suppl 1):7–11PubMedCrossRefGoogle Scholar
  71. 71.
    Aetna (2005) Remicade: Clinical Policy Bulletin. October 28, 2005. 0341 RevisedGoogle Scholar
  72. 72.
    Keystone E (2005) Reality-based algorithm for treating with biologics. TNF inhibitors: a new era in the treatment of rheumatoid arthritis. Rheumatol News 1–11Google Scholar
  73. 73.
    Wolbink GJ, Voskuyl AE, Lems WF, de Groot E, Nurmohamed MT, Tak PP, et al (2005) Relationship between serum trough infliximab levels, pretreatment C reactive protein levels, and clinical response to infliximab treatment in patients with rheumatoid arthritis. Ann Rheum Dis 64:704–707PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Paul Emery
    • 1
    Email author
  • Cem Gabay
    • 2
  • Maarten Kraan
    • 3
  • Juan Gomez-Reino
    • 4
  1. 1.Academic Unit of Musculoskeletal DiseaseLeeds UniversityLeedsUK
  2. 2.Department of Internal MedicineUniversity Hospital of GenevaGeneva 14Switzerland
  3. 3.Schering-Plough Research InstituteKenilworthUSA
  4. 4.Rheumatology Service and Department of Medicine, Hospital Clinico Universitario, Medical SchoolUniversidad de Santiago de CompostelaSantiagoSpain

Personalised recommendations