Advertisement

The association between hyperuricemia and the Trp64Arg polymorphism of the beta-3 adrenergic receptor

  • Young Hee Rho
  • Seong Jae Choi
  • Young Ho Lee
  • Jong Dae Ji
  • Gwan Gyu SongEmail author
Original Article

Abstract

The object of this study was to determine the association of Trp64Arg polymorphism with hyperuricemia. This study is an age-matched, case-controlled study of 203 hyperuricemic and 203 normouricemic men. The frequency of genotypes was compared between the two groups. Possible confounding metabolic variables were included in a multiple logistic regression model for multivariate adjustment. The genotype frequencies of Trp64Trp, Trp64Arg, and Arg64Arg in hyperuricemic and normouricemic groups are respectively 130, 69, and 4 (64.0%, 34.0%, 2.0%) and 154, 45, and 4 (75.9%, 22.2%, 2.0%) (= 0.029, Chi-square test). Simple logistic regression analysis indicated that the Trp64Arg genotype is significantly associated with hyperuricemia (OR = 1.816, 95% CI (1.167–2.827), = 0.008). Multivariate analysis for controlling metabolic effects also showed a significant association with the occurrence of hyperuricemia (OR = 1.937, 95% CI (1.149–3.266), = 0.013). Trp64Arg polymorphism of the beta-3 adrenergic receptor may be independently associated with hyperuricemia in males.

Keywords

Hyperuricemia Gout Beta-3 adrenergic receptor Polymorphism Insulin Resistance 

References

  1. 1.
    Brixner DI, Ho MJ (2005) Clinical, humanistic, and economic outcomes of gout. Am J Manag Care 11:S459–S464PubMedGoogle Scholar
  2. 2.
    Choi HK, Mount DB, Reginato AM (2005) Pathogenesis of gout. Ann Intern Med 143:499–516PubMedGoogle Scholar
  3. 3.
    Vazquez-Mellado J, Alvarez Hernandez E, Burgos-Vargas R (2004) Primary prevention in rheumatology: the importance of hyperuricemia. Best Pract Res Clin Rheumatol 18:111–124PubMedCrossRefGoogle Scholar
  4. 4.
    Reaven GM (1988) Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37:1595–1607PubMedCrossRefGoogle Scholar
  5. 5.
    Third Report of the National Cholesterol Education Program (NCEP) (2002) Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation 106:3143–3421Google Scholar
  6. 6.
    Rho YH, Choi SJ, Lee YH, Ji JD, Choi KM, Baik SH, Chung SH, Kim CG, Choe JY, Lee SW, Chung WT, Song GG (2005) The prevalence of metabolic syndrome in patients with gout: a multicenter study. J Korean Med Sci 20:1029–1033PubMedCrossRefGoogle Scholar
  7. 7.
    Bonora E, Targher G, Zenere MB, Saggiani F, Cacciatori V, Tosi F, Travia D, Zenti MG, Branzi P, Santi L, Muggeo M (1996) Relationship of uric acid concentration to cardiovascular risk factors in young men. Role of obesity and central fat distribution. The Verona Young Men Atherosclerosis Risk Factors Study. Int J Obes Relat Metab Disord 20:975–980PubMedGoogle Scholar
  8. 8.
    Takahashi S, Yamamoto T, Tsutsumi Z, Moriwaki Y, Yamakita J, Higashino K (1997) Close correlation between visceral fat accumulation and uric acid metabolism in healthy men. Metabolism 46:1162–1165PubMedCrossRefGoogle Scholar
  9. 9.
    Malecki MT, Klupa T (2005) Type 2 diabetes mellitus: from genes to disease. Pharmacol Rep 57(Suppl):20–32PubMedGoogle Scholar
  10. 10.
    Walston J, Silver K, Bogardus C, Knowler WC, Celi FS, Austin S, Manning B, Strosberg AD, Stern MP, Raben N et al (1995) Time of onset of non-insulin-dependent diabetes mellitus and genetic variation in the beta 3-adrenergic-receptor gene. N Engl J Med 333:343–347PubMedCrossRefGoogle Scholar
  11. 11.
    Widen E, Lehto M, Kanninen T, Walston J, Shuldiner AR, Groop LC (1995) Association of a polymorphism in the beta 3-adrenergic-receptor gene with features of the insulin resistance syndrome in Finns. N Engl J Med 333:348–351PubMedCrossRefGoogle Scholar
  12. 12.
    Clement K, Vaisse C, Manning BS, Basdevant A, Guy-Grand B, Ruiz J, Silver KD, Shuldiner AR, Froguel P, Strosberg AD (1995) Genetic variation in the beta 3-adrenergic receptor and an increased capacity to gain weight in patients with morbid obesity. N Engl J Med 333:352–354PubMedCrossRefGoogle Scholar
  13. 13.
    Strosberg AD (1997) Structure and function of the beta 3-adrenergic receptor. Annu Rev Pharmacol Toxicol 37:421–450PubMedCrossRefGoogle Scholar
  14. 14.
    Tchernof A, Starling RD, Turner A, Shuldiner AR, Walston JD, Silver K, Poehlman ET (2000) Impaired capacity to lose visceral adipose tissue during weight reduction in obese postmenopausal women with the Trp64Arg beta3-adrenoceptor gene variant. Diabetes 49:1709–1713PubMedCrossRefGoogle Scholar
  15. 15.
    Shiwaku K, Nogi A, Anuurad E, Kitajima K, Enkhmaa B, Shimono K, Yamane Y (2003) Difficulty in losing weight by behavioral intervention for women with Trp64Arg polymorphism of the beta3-adrenergic receptor gene. Int J Obes Relat Metab Disord 27:1028–1036PubMedCrossRefGoogle Scholar
  16. 16.
    Hsueh WC, Cole SA, Shuldiner AR, Beamer BA, Blangero J, Hixson JE, MacCluer JW, Mitchell BD (2001) Interactions between variants in the beta3-adrenergic receptor and peroxisome proliferator-activated receptor-gamma2 genes and obesity. Diab Care 24:672–677CrossRefGoogle Scholar
  17. 17.
    Phares DA, Halverstadt AA, Shuldiner AR, Ferrell RE, Douglass LW, Ryan AS, Goldberg AP, Hagberg JM (2004) Association between body fat response to exercise training and multilocus ADR genotypes. Obes Res 12:807–815PubMedGoogle Scholar
  18. 18.
    Koda M, Ando F, Niino N, Shimokata H, Miyasaka K, Funakoshi A (2004) Association of cholecystokinin 1 receptor and beta3-adrenergic receptor polymorphisms with midlife weight gain. Obes Res 12:1212–1216PubMedGoogle Scholar
  19. 19.
    Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419PubMedCrossRefGoogle Scholar
  20. 20.
    Ruilope LM, Garcia-Puig J (2001) Hyperuricemia and renal function. Curr Hypertens Rep 3:197–202PubMedCrossRefGoogle Scholar
  21. 21.
    Campion EW, Glynn RJ, DeLabry LO (1987) Asymptomatic hyperuricemia. Risks and consequences in the Normative Aging Study. Am J Med 82:421–426PubMedCrossRefGoogle Scholar
  22. 22.
    Halliburton R (2004) Introduction to population genetics. Pearson Prentice Hall, New JerseyGoogle Scholar
  23. 23.
    Snaith M (2004) A (very) short history of diets for gout. Rheumatology (Oxford) 43:1054CrossRefGoogle Scholar
  24. 24.
    Leineweber K, Buscher R, Bruck H, Brodde OE (2004) Beta-adrenoceptor polymorphisms. Naunyn Schmiedebergs Arch Pharmacol 369:1–22PubMedCrossRefGoogle Scholar
  25. 25.
    Fujisawa T, Ikegami H, Kawaguchi Y, Ogihara T (1998) Meta-analysis of the association of Trp64Arg polymorphism of beta 3-adrenergic receptor gene with body mass index. J Clin Endocrinol Metab 83:2441–2444PubMedCrossRefGoogle Scholar
  26. 26.
    Kurokawa N, Nakai K, Kameo S, Liu ZM, Satoh H (2001) Association of BMI with the beta3-adrenergic receptor gene polymorphism in Japanese: meta-analysis. Obes Res 9:741–745PubMedGoogle Scholar
  27. 27.
    Zhan S, Ho SC (2005) Meta-analysis of the association of the Trp64Arg polymorphism in the beta3 adrenergic receptor with insulin resistance. Obes Res 13:1709–1719PubMedGoogle Scholar
  28. 28.
    Pietri-Rouxel F, St John Manning B, Gros J, Strosberg AD (1997) The biochemical effect of the naturally occurring Trp64–>Arg mutation on human beta3-adrenoceptor activity. Eur J Biochem 247:1174–1179PubMedCrossRefGoogle Scholar
  29. 29.
    Kimura K, Sasaki N, Asano A, Mizukami J, Kayahashi S, Kawada T, Fushiki T, Morimatsu M, Yoshida T, Saito M (2000) Mutated human beta3-adrenergic receptor (Trp64Arg) lowers the response to beta3-adrenergic agonists in transfected 3T3-L1 preadipocytes. Horm Metab Res 32:91–96PubMedGoogle Scholar
  30. 30.
    Perfetti R, Hui H, Chamie K, Binder S, Seibert M, McLenithan J, Silver K, Walston JD (2001) Pancreatic beta-cells expressing the Arg64 variant of the beta(3)-adrenergic receptor exhibit abnormal insulin secretory activity. J Mol Endocrinol 27:133–144PubMedCrossRefGoogle Scholar
  31. 31.
    Shihara N, Yasuda K, Moritani T, Ue H, Adachi T, Tanaka H, Tsuda K, Seino Y (1999) The association between Trp64Arg polymorphism of the beta3-adrenergic receptor and autonomic nervous system activity. J Clin Endocrinol Metab 84:1623–1627PubMedCrossRefGoogle Scholar
  32. 32.
    Walston J, Andersen RE, Seibert M, Hilfiker H, Beamer B, Blumenthal J, Poehlman ET (2003) Arg64 beta3-adrenoceptor variant and the components of energy expenditure. Obes Res 11:509–511PubMedCrossRefGoogle Scholar
  33. 33.
    Savage DB, Petersen KF, Shulman GI (2005) Mechanisms of insulin resistance in humans and possible links with inflammation. Hypertension 45:828–833PubMedCrossRefGoogle Scholar
  34. 34.
    Arch JR (2001) The beta 3-adrenergic system and beta 3-adrenergic agonists. Rev Endocr Metab Disord 2:385–393PubMedCrossRefGoogle Scholar
  35. 35.
    Arch JR (2002) Beta(3)-Adrenoceptor agonists: potential, pitfalls and progress. Eur J Pharmacol 440:99–107PubMedCrossRefGoogle Scholar
  36. 36.
    Mark AL, Rahmouni K, Correia M, Haynes WG (2003) A leptin-sympathetic-leptin feedback loop: potential implications for regulation of arterial pressure and body fat. Acta Physiol Scand 177:345–349PubMedCrossRefGoogle Scholar
  37. 37.
    Modan M, Halkin H, Karasik A, Lusky A (1987) Elevated serum uric acid—a facet of hyperinsulinaemia. Diabetologia 30:713–718PubMedCrossRefGoogle Scholar
  38. 38.
    Quinones-Galvan A, Ferrannini E (1997) Renal effects of insulin in man. J Nephrol 10:188–191PubMedGoogle Scholar
  39. 39.
    Fruehwald-Schultes B, Peters A, Kern W, Beyer J, Pfutzner A (1999) Serum leptin is associated with serum uric acid concentrations in humans. Metabolism 48:677–680PubMedCrossRefGoogle Scholar
  40. 40.
    Matsubara M, Chiba H, Maruoka S, Katayose S (2002) Elevated serum leptin concentrations in women with hyperuricemia. J Atheroscler Thromb 9:28–34PubMedGoogle Scholar
  41. 41.
    Bedir A, Topbas M, Tanyeri F, Alvur M, Arik N (2003) Leptin might be a regulator of serum uric acid concentrations in humans. Jpn Heart J 44:527–536PubMedCrossRefGoogle Scholar
  42. 42.
    Strazzullo P, Iacone R, Siani A, Cappuccio FP, Russo O, Barba G, Barbato A, D’Elia L, Trevisan M, Farinaro E (2001) Relationship of the Trp64Arg polymorphism of the beta3-adrenoceptor gene to central adiposity and high blood pressure: interaction with age. Cross-sectional and longitudinal findings of the Olivetti Prospective Heart Study. J Hypertens 19:399–406PubMedCrossRefGoogle Scholar
  43. 43.
    Wang G, Li Q, Niu T, Chen C, Xu X (2002) Association of GYS1 and beta(3)-AR gene with postprandial hyperglycemia and serum uric acid in type 2 diabetes mellitus. Chin Med J (Engl) 115:1308–1311Google Scholar
  44. 44.
    Choi HK, Atkinson K, Karlson EW, Willett W, Curhan G (2004) Alcohol intake and risk of incident gout in men: a prospective study. Lancet 363:1277–1281PubMedCrossRefGoogle Scholar
  45. 45.
    Choi HK, Curhan G (2004) Beer, liquor, and wine consumption and serum uric acid level: the Third National Health and Nutrition Examination Survey. Arthritis Rheum 51:1023–1029PubMedCrossRefGoogle Scholar
  46. 46.
    Mandell BF (2002) Hyperuricemia and gout: a reign of complacency. Cleve Clin J Med 69:589–590, 592–583Google Scholar
  47. 47.
    Krief S, Lonnqvist F, Raimbault S, Baude B, Van Spronsen A, Arner P, Strosberg AD, Ricquier D, Emorine LJ (1993) Tissue distribution of beta 3-adrenergic receptor mRNA in man. J Clin Invest 91:344–349PubMedGoogle Scholar
  48. 48.
    Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Young Hee Rho
    • 1
  • Seong Jae Choi
    • 1
  • Young Ho Lee
    • 1
  • Jong Dae Ji
    • 1
  • Gwan Gyu Song
    • 1
    Email author
  1. 1.Division of Rheumatology, Department of Internal MedicineKorea University Guro HospitalSeoulSouth Korea

Personalised recommendations