Rheumatology International

, Volume 25, Issue 3, pp 161–168 | Cite as

Macroscopic and radiological grading of osteoarthritis correlates inadequately with cartilage height and histologically demonstrable damage to cartilage structure

  • Andre SaalEmail author
  • J. Gaertner
  • M. Kuehling
  • Bernd Swoboda
  • Stefan Klug
Review Article


Introduction: The aim of the present study was to investigate different methods for determining osteoarthritis-related (OA) cartilaginous changes. Materials and methods: Human tibial heads were investigated radiologically, macroscopically and microscopically. The height of the hyaline cartilage was measured with the aid of a computerised digital image analysis system. Results: The comparison of the different evaluation systems revealed, in part, appreciable variations in severity and produced correlations of r=−0.312–0.673. In none of the methods was a linear correlation between the histomorphometrically measured decrease in cartilage height and the increasing grade of OA evident. Discussion: The microscopic scores are superior, since they provide the most precise description of cartilaginous structure. The variation in cartilage height with increasing OA is not a linear process; measurement of the cartilage height alone is not a valid parameter for determining the grade of OA.


Articular Cartilage Standard Deviation Tibial Plateau Hyaline Cartilage Cartilage Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kellgren JH, Lawrence JS (1957) Radiological assessment of osteoarthrosis. Ann Rheum Dis 16:494–501PubMedGoogle Scholar
  2. 2.
    Cooke TDV, Kelly BP, Harrison L, Mohamed G, Khan B (1999) Radiographic grading for knee osteoarthritis. A revised scheme that relates to alignment and deformity. J Rheumatol 26(3):641–644Google Scholar
  3. 3.
    Schroeder-Boersch H, Toews P, Jani L (1998) Reproduzierbarkeit von radiologischen Arthrosemerkmalen. Z Orthop 136:293–297Google Scholar
  4. 4.
    Danielsson L, Hernborg J (1970) Clinical and roentgenologic study of knee joints with osteophytes. Clin Orthop 69:302–312Google Scholar
  5. 5.
    Gannon FH, Sokoloff L (1999) Histomorphometry of the aging human patella: histologic criteria and controls. Osteoarthritis Cartilage 7:173–181Google Scholar
  6. 6.
    Outerbridge RE, Dunlop JAY (1975) The problem of chondromalacia patellae. Clin Orthop 110:177–193Google Scholar
  7. 7.
    Kraemer KL, Maichl FP (1993) Scores, Bewertungsschemata und Klassifikationen in der Orthopaedie und Traumatologie. Thieme StuttgartGoogle Scholar
  8. 8.
    Mankin HJ, Dorfman H, Lippiello L, Zarins A (1971) Biochemical and metabolic abnormalities in articular cartilage from osteoarthritic human hips. J Bone Joint Surg 53-A(3):523–537Google Scholar
  9. 9.
    Fassbender HG (1975) Arthrose in Pathologie rheumatischer Erkrankungen. Springer, Berlin Heidelberg New York, pp 295–318Google Scholar
  10. 10.
    Yoshioka M, Coutts RD, Amiel D, Hacker SA (1996) Characterization of a model of osteoarthritis in the rabbit knee. Osteoarthritis Cartilage 4:87–98Google Scholar
  11. 11.
    Delling G (1972) Ueber eine vereinfachte Methacrylateinbettung für unentkalkte Knochenschnitte. Beitr Pathol 145:100–105Google Scholar
  12. 12.
    Henschke F, Pesch HJ (1978) Kunststoffeinbettung im Knochenlabor. Praeparative Voraussetzungen zur Schnitt- und Schlifftechnik. MTA 24:211–216Google Scholar
  13. 13.
    Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 2:307–310Google Scholar
  14. 14.
    Glueckert K, Blank-Schael A, Hofmann G, Kladny B, Willauschus W, Wirtz P (1990) Moeglichkeiten der Frueherfassung von Arthrosen durch bildgebende Verfahren. Orthopaede 19:50–57Google Scholar
  15. 15.
    Reginster JY, Deroisy R, Rovati LC, Lee RL, Lejeune E, Bruyere O, Giacovelli G, Henrotin Y, Dacre JE, Gossett C (2001) Long-term effects of glucosamine sulphate on osteoarthritis progression: a randomised, placebo-controlled clinical trial. Lancet 357:251–256CrossRefPubMedGoogle Scholar
  16. 16.
    Vignon E, Arlot M (1981) Macroscopically normal cartilage from the human osteoarthritic femoral head. J Rheumatol 8:447–450Google Scholar
  17. 17.
    Ostergaard K, Petersen J, Andersen CB, Bendtzen K, Salter DM (1999) Validity of histopathological grading of articular cartilage from osteoarthrosis knee joints. Ann Rheum Dis 58:208–213Google Scholar
  18. 18.
    Van Valburg AA, Van Osch GJVM, Van der Kraan PM, Van den Berg WB (1996) Quantification of morphometric changes in murine experimental osteoarthritis using image analysis. Rheumatol Int 15:181–187Google Scholar
  19. 19.
    Hulth A (1993) Does osteoarthrosis depend on growth of the mineralized layer of cartilage? Clin Orthop 287:19–24Google Scholar
  20. 20.
    Panula HE, Hyttinen MM, Arokoski JPA, Långsjö TK, Pelttari A, Kiviranta I (1998) Articular cartilage superficial zone collagen birefringence reduced and cartilage thickness increased before surface fibrillation in experimental osteoarthritis. Ann Rheum Dis 57:237–245Google Scholar
  21. 21.
    Brandt KD (1993) Compensation and decompensation of articular cartilage in osteoarthritis. Agents Actions 40:232–234Google Scholar
  22. 22.
    Eckstein F, Winzheimer M, Hohe J, Englmeier KH, Reiser M (2001) Interindividual variability and correlation among morphological parameters of knee joint cartilage plates: analysis with three-dimensional MR imaging. Osteoarthritis Cartilage 9(2):101–111Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Andre Saal
    • 1
    Email author
  • J. Gaertner
    • 2
  • M. Kuehling
    • 3
  • Bernd Swoboda
    • 4
  • Stefan Klug
    • 5
  1. 1.Bad NeustadtGermany
  2. 2.NuernbergGermany
  3. 3.HerzogenaurachGermany
  4. 4.Waldkrankenhaus St. Marien, Division of Orthopaedic RheumatologyErlangenGermany
  5. 5.ErlangenGermany

Personalised recommendations