Skip to main content

The Boggarts of biology: how non-genetic changes influence the genotype

Abstract

The notion that there is a one–one mapping from genotype to phenotype was overturned a long time ago. Along with genotype and environment, ‘non-genetic changes’ orchestrated by altered RNA and protein molecules also guide the development of phenotype. The idea that there is a route through which changes in phenotype can lead to changes in genotype impinges on several phenomena of molecular, developmental, evolutionary and applied interest. Phenotypic changes that do not alter the underlying DNA sequence have been studied across model systems (eg: DNA and histone modifications, RNA editing, prion formation) and are known to play an important role in short-term adaptation. However, because of their transient nature and unstable inheritance, the role of such changes in long-term evolution has remained controversial. I classify and review three ways in which non-genetic changes can influence genotype and impact cellular fitness across generations, with an emphasis on the enticing idea that they may act as stepping stones for genetic adaptation. I focus on work from microbial systems and attempt to highlight recent experiments and models that bear on this idea. Overall, I review evidence which suggests that non-genetic changes can impact phenotype via their influence on the genotype, and thus play a role in evolutionary change.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Image source: Online repository of open access images from the Metropolitan Museum of Art

Fig. 3
Fig. 4

References

  1. Ackermann M (2015) A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol 13:497–508

    CAS  PubMed  Google Scholar 

  2. Al Mamun AAM, Gautam S, Humayun MZ (2006) Hypermutagenesis in mutA cells is mediated by mistranslational corruption of polymerase, and is accompanied by replication fork collapse. Mol Microbiol 62:1752–1763

    CAS  PubMed  Google Scholar 

  3. Bacher JM, Schimmel P (2007) An editing-defective aminoacyl-tRNA synthetase is mutagenic in aging bacteria via the SOS response. Proc Natl Acad Sci U S A 104:1907–1912

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Baharoglu Z, Mazel D (2014) SOS, the formidable strategy of bacteria against aggressions. FEMS Microbiol Rev 38:1126–1145

    CAS  PubMed  Google Scholar 

  5. Baldwin MJ (1896) A new factor in evolution. Am Nat 30:441–451

    Google Scholar 

  6. Baylin SB, Jones PA (2016) Epigenetic determinants of cancer. Cold Spring Harb Perspect Biol 8:a019505

    PubMed  PubMed Central  Google Scholar 

  7. Behera N, Nanjundiah V (2004) Phenotypic plasticity can potentiate rapid evolutionary change. J Theor Biol 226:177–184

    PubMed  Google Scholar 

  8. Boczek EE, Reefschlager LG, Dehling M, Struller TJ, Hausler E, Seidl A, Kaila VR, Buchner J (2015) Conformational processing of oncogenic v-Src kinase by the molecular chaperone Hsp90. Proc Natl Acad Sci U S A 112:E3189–3198

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bodi Z, Farkas Z, Nevozhay D, Kalapis D, Lazar V, Csorgo B, Nyerges A, Szamecz B, Fekete G, Papp B et al (2017) Phenotypic heterogeneity promotes adaptive evolution. PLoS Biol 15:e2000644

    PubMed  PubMed Central  Google Scholar 

  10. Bonduriansky R, Day T (2009) Nongenetic inheritance and its evolutionary implications. Annu Rev Ecol Evol Syst 40:103–125

    Google Scholar 

  11. Bratulic S, Gerber F, Wagner A (2015) Mistranslation drives the evolution of robustness in TEM-1 beta-lactamase. Proc Natl Acad Sci U S A 112:12758–12763

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bratulic S, Toll-Riera M, Wagner A (2017) Mistranslation can enhance fitness through purging of deleterious mutations. Nat Commun 8:15410

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bullwinkle TJ, Reynolds NM, Raina M, Moghal A, Matsa E, Rajkovic A, Kayadibi H, Fazlollahi F, Ryan C, Howitz N et al (2014) Oxidation of cellular amino acid pools leads to cytotoxic mistranslation of the genetic code. Elife 3:e02501

    PubMed Central  Google Scholar 

  14. Carey JN, Mettert EL, Roggiani M, Myers KS, Kiley PJ, Goulian M (2018) Regulated stochasticity in a bacterial signaling network permits tolerance to a rapid environmental change. Cell 173(196–207):e114

    Google Scholar 

  15. Chakrabortee S, Byers JS, Jones S, Garcia DM, Bhullar B, Chang A, She R, Lee L, Fremin B, Lindquist S et al (2016) Intrinsically disordered proteins drive emergence and inheritance of biological traits. Cell 167(369–381):e312

    Google Scholar 

  16. Charlesworth D, Barton NH, Charlesworth B (2017) The sources of adaptive variation. Proc Biol Sci 284:20162864

    PubMed  PubMed Central  Google Scholar 

  17. Chernoff YO, Derkach IL, Inge-Vechtomov SG (1993) Multicopy SUP35 gene induces de-novo appearance of psi-like factors in the yeast Saccharomyces cerevisiae. Curr Genet 24:268–270

    CAS  PubMed  Google Scholar 

  18. Cohen NR, Lobritz MA, Collins JJ (2013) Microbial persistence and the road to drug resistance. Cell Host Microbe 13:632–642

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Crick FH (1958) On protein synthesis. Symp Soc Exp Biol 12:138–163

    CAS  PubMed  Google Scholar 

  20. Crispo E (2007) The Baldwin effect and genetic assimilation: revisiting two mechanisms of evolutionary change mediated by phenotypic plasticity. Evolution 61:2469–2479

    PubMed  Google Scholar 

  21. de Farias ST, Dos Santos Junior AP, Rego TG, Jose MV (2017) Origin and evolution of RNA-dependent RNA polymerase. Front Genet 8:125

    PubMed  PubMed Central  Google Scholar 

  22. Debets AJ, Dalstra HJ, Slakhorst M, Koopmanschap B, Hoekstra RF, Saupe SJ (2012) High natural prevalence of a fungal prion. Proc Natl Acad Sci U S A 109:10432–10437

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Dorr T, Vulic M, Lewis K (2010) Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol 8:e1000317

    PubMed  PubMed Central  Google Scholar 

  24. Dorrity MW, Cuperus JT, Carlisle JA, Fields S, Queitsch C (2018) Preferences in a trait decision determined by transcription factor variants. Proc Natl Acad Sci U S A 115:E7997–E8006

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Drummond DA, Wilke CO (2008) Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell 134:341–352

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Drummond DA, Wilke CO (2009) The evolutionary consequences of erroneous protein synthesis. Nat Rev Genet 10:715–724

    PubMed  PubMed Central  Google Scholar 

  27. Ehrlich M, Norris KF, Wang RY, Kuo KC, Gehrke CW (1986) DNA cytosine methylation and heat-induced deamination. Biosci Rep 6:387–393

    CAS  PubMed  Google Scholar 

  28. Fan Y, Wu J, Ung MH, De Lay N, Cheng C, Ling J (2015) Protein mistranslation protects bacteria against oxidative stress. Nucleic Acids Res 43:1740–1748

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Fan Y, Evans CR, Barber KW, Banerjee K, Weiss KJ, Margolin W, Igoshin OA, Rinehart J, Ling J (2017) Heterogeneity of stop codon readthrough in single bacterial cells and implications for population fitness. Mol Cell 67(826–836):e825

    Google Scholar 

  30. Farabaugh PJ (1996) Programmed translational frameshifting. Microbiol Rev 60:103–134

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Fox RJ, Donelson JM, Schunter C, Ravasi T, Gaitan-Espitia JD (2019) Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Philos Trans R Soc Lond B Biol Sci 374:20180174

    PubMed  PubMed Central  Google Scholar 

  32. Gazzoli I, Loda M, Garber J, Syngal S, Kolodner RD (2002) A hereditary nonpolyposis colorectal carcinoma case associated with hypermethylation of the MLH1 gene in normal tissue and loss of heterozygosity of the unmethylated allele in the resulting microsatellite instability-high tumor. Cancer Res 62:3925–3928

    CAS  PubMed  Google Scholar 

  33. Glass NL, Kaneko I (2003) Fatal attraction: nonself recognition and heterokaryon incompatibility in filamentous fungi. Eukaryot Cell 2:1–8

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Goldsmith M, Tawfik DS (2009) Potential role of phenotypic mutations in the evolution of protein expression and stability. Proc Natl Acad Sci U S A 106:6197–6202

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Gott JM, Emeson RB (2000) Functions and mechanisms of RNA editing. Annu Rev Genet 34:499–531

    CAS  PubMed  Google Scholar 

  36. Gout JF, Thomas WK, Smith Z, Okamoto K, Lynch M (2013) Large-scale detection of in vivo transcription errors. Proc Natl Acad Sci U S A 110:18584–18589

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Govers SK, Mortier J, Adam A, Aertsen A (2018) Protein aggregates encode epigenetic memory of stressful encounters in individual Escherichia coli cells. PLoS Biol 16:e2003853

    PubMed  PubMed Central  Google Scholar 

  38. Halfmann R, Jarosz DF, Jones SK, Chang A, Lancaster AK, Lindquist S (2012) Prions are a common mechanism for phenotypic inheritance in wild yeasts. Nature 482:363–368

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hinton GE, Nowlan SJ (1987) How learning can guide evolution. Complex Syst 1:495–502

    Google Scholar 

  40. Humayun MZ (1998) SOS and Mayday: multiple inducible mutagenic pathways in Escherichia coli. Mol Microbiol 30:905–910

    CAS  PubMed  Google Scholar 

  41. Huseby DL, Brandis G, Praski Alzrigat L, Hughes D (2020) Antibiotic resistance by high-level intrinsic suppression of a frameshift mutation in an essential gene. Proc Natl Acad Sci U S A 117:3185–3191

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ivanova NN, Schwientek P, Tripp HJ, Rinke C, Pati A, Huntemann M, Visel A, Woyke T, Kyrpides NC, Rubin EM (2014) Stop codon reassignments in the wild. Science 344:909–913

    CAS  PubMed  Google Scholar 

  43. Jablonka E, Lamb MJ (2005a) Interacting dimensions- genes and epigenetic systems. In: Sterelny K, Wilson RA (eds) Evolution in four dimensions: genetic, epigenetic, behavioral, and symbolic variation in the history of life. MIT Press, pp 245–283

  44. Jablonka E, Lamb MJ (2005b) Genetic variation: blind, directed, interpretive? In: Sterelny K, Wilson RA (eds) Evolution in four dimensions: genetic, epigenetic, behavioral, and symbolic variation in the history of life. MIT Press, pp 102–107

  45. Jablonka E, Raz G (2009) Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q Rev Biol 84:131–176

    PubMed  Google Scholar 

  46. Javid B, Sorrentino F, Toosky M, Zheng W, Pinkham JT, Jain N, Pan M, Deighan P, Rubin EJ (2014) Mycobacterial mistranslation is necessary and sufficient for rifampicin phenotypic resistance. Proc Natl Acad Sci U S A 111:1132–1137

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kakutani T, Jeddeloh JA, Richards EJ (1995) Characterization of an Arabidopsis thaliana DNA hypomethylation mutant. Nucleic Acids Res 23:130–137

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Klironomos FD, Berg J, Collins S (2013) How epigenetic mutations can affect genetic evolution: model and mechanism. BioEssays 35:571–578

    PubMed  Google Scholar 

  49. Klosin A, Casas E, Hidalgo-Carcedo C, Vavouri T, Lehner B (2017) Transgenerational transmission of environmental information in C. elegans. Science 356:320–323

    CAS  PubMed  Google Scholar 

  50. Kosinski LJ, Masel J (2020) Readthrough errors purge deleterious cryptic sequences, facilitating the birth of coding sequences. Mol Biol Evol 37:1761–1774

    CAS  PubMed  Google Scholar 

  51. Kramer EB, Farabaugh PJ (2007) The frequency of translational misreading errors in E. coli is largely determined by tRNA competition. RNA 13:87–96

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Krishna S, Laxman S (2020) Emergence of metabolic heterogeneity in cell populations: lessons from budding yeast. In: Levine H, Jolly MK, Kulkarni P, Nanjundiah V (eds) Phenotypic switching: implications in biology and medicine. Academic Press, pp 335–358

  53. Krisko A, Radman M (2013) Phenotypic and genetic consequences of protein damage. PLoS Genet 9:e1003810

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kronholm I, Bassett A, Baulcombe D, Collins S (2017) Epigenetic and genetic contributions to adaptation in chlamydomonas. Mol Biol Evol 34:2285–2306

    CAS  PubMed  Google Scholar 

  55. Lajoie MJ, Rovner AJ, Goodman DB, Aerni HR, Haimovich AD, Kuznetsov G, Mercer JA, Wang HH, Carr PA, Mosberg JA et al (2013) Genomically recoded organisms expand biological functions. Science 342:357–360

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lambert G, Kussell E (2014) Memory and fitness optimization of bacteria under fluctuating environments. PLoS Genet 10:e1004556

    PubMed  PubMed Central  Google Scholar 

  57. Levin BR, Rozen DE (2006) Non-inherited antibiotic resistance. Nat Rev Microbiol 4:556–562

    CAS  PubMed  Google Scholar 

  58. Levin-Reisman I, Ronin I, Gefen O, Braniss I, Shoresh N, Balaban NQ (2017) Antibiotic tolerance facilitates the evolution of resistance. Science 355:826–830

    CAS  PubMed  Google Scholar 

  59. Ling J, O'Donoghue P, Soll D (2015) Genetic code flexibility in microorganisms: novel mechanisms and impact on physiology. Nat Rev Microbiol 13:707–721

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu J, Gefen O, Ronin I, Bar-Meir M, Balaban NQ (2020) Effect of tolerance on the evolution of antibiotic resistance under drug combinations. Science 367:200–204

    CAS  PubMed  Google Scholar 

  61. Ma NJ, Isaacs FJ (2016) Genomic recoding broadly obstructs the propagation of horizontally transferred genetic elements. Cell Syst 3:199–207

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Moazed D (2011) Mechanisms for the inheritance of chromatin states. Cell 146:510–518

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Mordret E, Dahan O, Asraf O, Rak R, Yehonadav A, Barnabas GD, Cox J, Geiger T, Lindner AB, Pilpel Y (2019) Systematic detection of amino acid substitutions in proteomes reveals mechanistic basis of ribosome errors and selection for translation fidelity. Mol Cell 75:427–441 e425

    CAS  PubMed  Google Scholar 

  64. Nanjundiah V (2020). In: Levine H, Jolly MK, Kulkarni P, Nanjundiah V (eds) Preface, phenotypic switching: implications in biology and medicine. Academic Press, pp xxiii–xxx

  65. Novick A, Weiner M (1957) Enzyme induction as an all-or-none phenomenon. Proc Natl Acad Sci U S A 43:553–566

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Prat L, Heinemann IU, Aerni HR, Rinehart J, O'Donoghue P, Soll D (2012) Carbon source-dependent expansion of the genetic code in bacteria. Proc Natl Acad Sci U S A 109:21070–21075

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216:136–144

    CAS  PubMed  Google Scholar 

  68. Queitsch C, Sangster TA, Lindquist S (2002) Hsp90 as a capacitor of phenotypic variation. Nature 417:618–624

    CAS  PubMed  Google Scholar 

  69. Ribas de Pouplana L, Santos MA, Zhu JH, Farabaugh PJ, Javid B (2014) Protein mistranslation: friend or foe? Trends Biochem Sci 39:355–362

    CAS  PubMed  Google Scholar 

  70. Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396:336–342

    CAS  PubMed  Google Scholar 

  71. Sabater-Munoz B, Prats-Escriche M, Montagud-Martinez R, Lopez-Cerdan A, Toft C, Aguilar-Rodriguez J, Wagner A, Fares MA (2015) Fitness trade-offs determine the role of the molecular chaperonin GroEL in buffering mutations. Mol Biol Evol 32:2681–2693

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Samhita L, Raval PK, Agashe D (2020a) Global mistranslation increases cell survival under stress in Escherichia coli. PLoS Genet 16:e1008654

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Samhita L, Raval PK, Stephenson G, Thutupalli S, Agashe D (2020b) The impact of mistranslation on phenotypic variability and fitness. bioRxiv. https://doi.org/10.1101/2020.05.19.104141

  74. Schuster-Bockler B, Lehner B (2012) Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature 488:504–507

    Google Scholar 

  75. Schwartz MH, Waldbauer JR, Zhang L, Pan T (2016) Global tRNA misacylation induced by anaerobiosis and antibiotic exposure broadly increases stress resistance in Escherichia coli. Nucleic Acids Res

  76. Slupska MM, Baikalov C, Lloyd R, Miller JH (1996) Mutator tRNAs are encoded by the Escherichia coli mutator genes mutA and mutC: a novel pathway for mutagenesis. Proc Natl Acad Sci U S A 93:4380–4385

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Stajic D, Bank C (2020) Phenotypic switching and its evolutionary consequences. In: Levine H, Jolly MK, Kulkarni P, Nanjundiah V (eds) Phenotypic switching: implications in biology and medicine. Academic Press, p 281–301

  78. Stajic D, Perfeito L, Jansen LET (2019) Epigenetic gene silencing alters the mechanisms and rate of evolutionary adaptation. Nat Ecol Evol 3:491–498

    PubMed  Google Scholar 

  79. Sutton MD, Walker GC (2001) Managing DNA polymerases: coordinating DNA replication, DNA repair, and DNA recombination. Proc Natl Acad Sci U S A 98:8342–8349

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Tadrowski AC, Evans MR, Waclaw B (2018) Phenotypic switching can speed up microbial evolution. Sci Rep 8:8941

    PubMed  PubMed Central  Google Scholar 

  81. Tan IS, Ramamurthi KS (2014) Spore formation in Bacillus subtilis. Environ Microbiol Rep 6:212–225

    CAS  PubMed  Google Scholar 

  82. True HL, Lindquist SL (2000) A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407:477–483

    CAS  PubMed  Google Scholar 

  83. True HL, Berlin I, Lindquist SL (2004) Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits. Nature 431:184–187

    CAS  PubMed  Google Scholar 

  84. Tsokos CG, Laub MT (2012) Polarity and cell fate asymmetry in Caulobacter crescentus. Curr Opin Microbiol 15:744–750

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Tuite F, Mick (2020) Prion-mediated phenotypic diversity in fungi. In: Levine H, Jolly MK, Kulkarni P, Nanjundiah V (eds) Phenotypic switching: implications in biology and medicine. Academic Press, pp 105–123

  86. Tyedmers J, Madariaga ML, Lindquist S (2008) Prion switching in response to environmental stress. PLoS Biol 6:e294

    PubMed  PubMed Central  Google Scholar 

  87. Uversky VN (2019) Protein intrinsic disorder and structure-function continuum. Prog Mol Biol Transl Sci 166:1–17

    CAS  PubMed  Google Scholar 

  88. Waddington CH (1942) Canalization of development and the inheritance of acquired characters. Nature 160:563–565

    Google Scholar 

  89. West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, Oxford

    Google Scholar 

  90. Whitehead DJ, Wilke CO, Vernazobres D, Bornberg-Bauer E (2008) The look-ahead effect of phenotypic mutations. Biol Direct 3:18

    PubMed  PubMed Central  Google Scholar 

  91. Windels EM, Michiels JE, Fauvart M, Wenseleers T, Van den Bergh B, Michiels J (2019) Bacterial persistence promotes the evolution of antibiotic resistance by increasing survival and mutation rates. ISME J 13:1239–1251

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Yanagida H, Gispan A, Kadouri N, Rozen S, Sharon M, Barkai N, Tawfik DS (2015) The evolutionary potential of phenotypic mutations. PLoS Genet 11:e1005445

    PubMed  PubMed Central  Google Scholar 

  93. Zabinsky RA, Mason GA, Queitsch C, Jarosz DF (2019) It’s not magic—Hsp90 and its effects on genetic and epigenetic variation. Semin Cell Dev Biol 88:21–35

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank Vidyanand Nanjundiah, Deepa Agashe, Sunil Laxman, Asha Joseph and members of Deepa’s lab for critical comments and suggestions on this review. I acknowledge Ipsa Jain for Figures 1, 3 and 4. I acknowledge funding and support from the DBT/Wellcome trust India Alliance (Grant IA/E/14/1/501771), and support from the National Centre for Biological Sciences.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Laasya Samhita.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by M. Kupiec.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Samhita, L. The Boggarts of biology: how non-genetic changes influence the genotype. Curr Genet 67, 65–77 (2021). https://doi.org/10.1007/s00294-020-01108-5

Download citation

Keywords

  • Non-genetic change
  • Translation errors
  • Phenotypic variability
  • Adaptation
  • Evolution