Skip to main content
Log in

Distinct associations of the Saccharomyces cerevisiae Rad9 protein link Mac1-regulated transcription to DNA repair

  • Original Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

While it is known that ScRad9 DNA damage checkpoint protein is recruited to damaged DNA by recognizing specific histone modifications, here we report a different way of Rad9 recruitment on chromatin under non DNA damaging conditions. We found Rad9 to bind directly with the copper-modulated transcriptional activator Mac1, suppressing both its DNA binding and transactivation functions. Rad9 was recruited to active Mac1-target promoters (CTR1, FRE1) and along CTR1 coding region following the association pattern of RNA polymerase (Pol) II. Hir1 histone chaperone also interacted directly with Rad9 and was partly required for its localization throughout CTR1 gene. Moreover, Mac1-dependent transcriptional initiation was necessary and sufficient for Rad9 recruitment to the heterologous ACT1 coding region. In addition to Rad9, Rad53 kinase also localized to CTR1 coding region in a Rad9-dependent manner. Our data provide an example of a yeast DNA-binding transcriptional activator that interacts directly with a DNA damage checkpoint protein in vivo and is functionally restrained by this protein, suggesting a new role for Rad9 in connecting factors of the transcription machinery with the DNA repair pathway under unchallenged conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aboussekhra A, Vialard JE, Morrison DE, de la Torre-Ruiz MA, Cernakova L, Fabre F, Lowndes NF (1996) A novel role for the budding yeast RAD9 checkpoint gene in DNA damage-dependent transcription. EMBO J 15:3912–3922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Moghrabi NM, Al-Sharif IS, Aboussekhra A (2001) The Saccharomyces cerevisiae RAD9 cell cycle checkpoint gene is required for optimal repair of UV-induced pyrimidine dimers in both G(1) and G(2)/M phases of the cell cycle. Nucleic Acids Res 29:2020–2025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Moghrabi NM, Al-Sharif IS, Aboussekhra A (2009) The RAD9-dependent gene trans-activation is required for excision repair of active genes but not for repair of non-transcribed DNA. Mutat Res 663:60–68

    Article  CAS  PubMed  Google Scholar 

  • Alpha-Bazin B, Lorphelin A, Nozerand N, Charier G, Marchetti C, Berenguer F, Couprie J, Gilquin B, Zinn-Justin S, Quemeneur E (2005) Boundaries and physical characterization of a new domain shared between mammalian 53BP1 and yeast Rad9 checkpoint proteins. Protein Sci 14:1827–1839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreadis C, Nikolaou C, Fragiadakis GS, Tsiliki G, Alexandraki D (2014) Rad9 interacts with Aft1 to facilitate genome surveillance in fragile genomic sites under non-DNA damage-inducing conditions in S. cerevisiae. Nucleic Acids Res 42:12650–12667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1987) Current protocols in molecular biology. Greene Publishing Associates, New York

    Google Scholar 

  • Bantele SCS, Pfander B (2019) Quantitative mechanisms of DNA damage sensing and signaling. Curr Genet 128(1):1–4

    Google Scholar 

  • Bao Y, Shen X (2007) Chromatin remodeling in DNA double-strand break repair. Curr Opin Genet Dev 17:126–131

    Article  CAS  PubMed  Google Scholar 

  • Bastos de Oliveira FM, Kim D, Cussiol JR, Das J, Jeong MC, Doerfler L, Schmidt KH, Yu H, Smolka MB (2015) Phosphoproteomics reveals distinct modes of Mec1/ATR signaling during DNA replication. Mol Cell 57:1124–1132

    Article  CAS  PubMed  Google Scholar 

  • Becker DM, Fikes JD, Guarente L (1991) A cDNA encoding a human CCAAT-binding protein cloned by functional complementation in yeast. Proc Natl Acad Sci USA 88:1968–1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilsland E, Molin C, Swaminathan S, Ramne A, Sunnerhagen P (2004) Rck1 and Rck2 MAPKAP kinases and the HOG pathway are required for oxidative stress resistance. Mol Microbiol 53:1743–1756

    Article  CAS  PubMed  Google Scholar 

  • Blankley RT, Lydall D (2004) A domain of Rad9 specifically required for activation of Chk1 in budding yeast. J Cell Sci 117:601–608

    Article  CAS  PubMed  Google Scholar 

  • Bochar DA, Wang L, Beniya H, Kinev A, Xue Y, Lane WS, Wang W, Kashanchi F, Shiekhattar R (2000) BRCA1 is associated with a human SWI/SNF-related complex: linking chromatin remodeling to breast cancer. Cell 102:257–265

    Article  CAS  PubMed  Google Scholar 

  • Bonilla CY, Melo JA, Toczyski DP (2008) Colocalization of sensors is sufficient to activate the DNA damage checkpoint in the absence of damage. Mol Cell 30:267–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botchkarev VV Jr, Haber JE (2018) Functions and regulation of the Polo-like kinase Cdc5 in the absence and presence of DNA damage. Curr Genet 64:87–96

    Article  CAS  PubMed  Google Scholar 

  • Bothmer A, Robbiani DF, Di Virgilio M, Bunting SF, Klein IA, Feldhahn N, Barlow J, Chen HT, Bosque D, Callen E, Nussenzweig A, Nussenzweig MC (2011) Regulation of DNA end joining, resection, and immunoglobulin class switch recombination by 53BP1. Mol Cell 42:319–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chai YL, Cui J, Shao N, Shyam E, Reddy P, Rao VN (1999) The second BRCT domain of BRCA1 proteins interacts with p53 and stimulates transcription from the p21WAF1/CIP1 promoter. Oncogene 18:263–268

    Article  CAS  PubMed  Google Scholar 

  • Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40:179–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corcoles-Saez I, Dong K, Cha RS (2019) Versatility of the Mec1(ATM/ATR) signaling network in mediating resistance to replication, genotoxic, and proteotoxic stresses. Curr Genet 65:657–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coutelier H, Xu Z (2019) Adaptation in replicative senescence: a risky business. Curr Genet 65:711–716

    Article  CAS  PubMed  Google Scholar 

  • Cuella-Martin R, Oliveira C, Lockstone HE, Snellenberg S, Grolmusova N, Chapman JR (2016) 53BP1 integrates DNA repair and p53-dependent cell fate decisions via distinct mechanisms. Mol Cell 64:51–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derbyshire DJ, Basu BP, Serpell LC, Joo WS, Date T, Iwabuchi K, Doherty AJ (2002) Crystal structure of human 53BP1 BRCT domains bound to p53 tumour suppressor. EMBO J 21:3863–3872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DiTullio RA Jr, Mochan TA, Venere M, Bartkova J, Sehested M, Bartek J, Halazonetis TD (2002) 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer. Nat Cell Biol 4:998–1002

    Article  CAS  PubMed  Google Scholar 

  • Dohrmann PR, Sclafani RA (2006) Novel role for checkpoint Rad53 protein kinase in the initiation of chromosomal DNA replication in Saccharomyces cerevisiae. Genetics 174:87–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emili A (1998) MEC1-dependent phosphorylation of Rad9p in response to DNA damage. Mol Cell 2:183–189

    Article  CAS  PubMed  Google Scholar 

  • Emili A, Schieltz DM, Yates JR 3rd, Hartwell LH (2001) Dynamic interaction of DNA damage checkpoint protein Rad53 with chromatin assembly factor Asf1. Mol Cell 7:13–20

    Article  CAS  PubMed  Google Scholar 

  • Fasullo M, Bennett T, AhChing P, Koudelik J (1998) The Saccharomyces cerevisiae RAD9 checkpoint reduces the DNA damage-associated stimulation of directed translocations. Mol Cell Biol 18:1190–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Capetillo O, Chen HT, Celeste A, Ward I, Romanienko PJ, Morales JC, Naka K, Xia Z, Camerini-Otero RD, Motoyama N, Carpenter PB, Bonner WM, Chen J, Nussenzweig A (2002) DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1. Nat Cell Biol 4:993–997

    Article  CAS  PubMed  Google Scholar 

  • Finn K, Lowndes NF, Grenon M (2012) Eukaryotic DNA damage checkpoint activation in response to double-strand breaks. Cell Mol Life Sci 69:1447–1473

    Article  CAS  PubMed  Google Scholar 

  • FitzGerald JE, Grenon M, Lowndes NF (2009) 53BP1: function and mechanisms of focal recruitment. Biochem Soc Trans 37:897–904

    Article  CAS  PubMed  Google Scholar 

  • Flattery-O’Brien JA, Dawes IW (1998) Hydrogen peroxide causes RAD9-dependent cell cycle arrest in G2 in Saccharomyces cerevisiae whereas menadione causes G1 arrest independent of RAD9 function. J Biol Chem 273:8564–8571

    Article  PubMed  Google Scholar 

  • Formosa T, Ruone S, Adams MD, Olsen AE, Eriksson P, Yu Y, Rhoades AR, Kaufman PD, Stillman DJ (2002) Defects in SPT16 or POB3 (yFACT) in Saccharomyces cerevisiae cause dependence on the Hir/Hpc pathway: polymerase passage may degrade chromatin structure. Genetics 162:1557–1571

    CAS  PubMed  PubMed Central  Google Scholar 

  • Georgakopoulos T, Koutroubas G, Vakonakis I, Tzermia M, Prokova V, Voutsina A, Alexandraki D (2001) Functional analysis of the Saccharomyces cerevisiae YFR021w/YGR223c/YPL100w ORF family suggests relations to mitochondrial/peroxisomal functions and amino acid signalling pathways. Yeast 18:1155–1171

    Article  CAS  PubMed  Google Scholar 

  • Georgatsou E, Alexandraki D (1999) Regulated expression of the Saccharomyces cerevisiae Fre1p/Fre2p Fe/Cu reductase related genes. Yeast 15:573–584

    Article  CAS  PubMed  Google Scholar 

  • Georgatsou E, Mavrogiannis LA, Fragiadakis GS, Alexandraki D (1997) The yeast Fre1p/Fre2p cupric reductases facilitate copper uptake and are regulated by the copper-modulated Mac1p activator. J Biol Chem 272:13786–13792

    Article  CAS  PubMed  Google Scholar 

  • Gerton JL, DeRisi J, Shroff R, Lichten M, Brown PO, Petes TD (2000) Global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 97:11383–11390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giannattasio M, Sabbioneda S, Minuzzo M, Plevani P, Muzi-Falconi M (2003) Correlation between checkpoint activation and in vivo assembly of the yeast checkpoint complex Rad17-Mec3-Ddc1. J Biol Chem 278:22303–22308

    Article  CAS  PubMed  Google Scholar 

  • Gilbert CS, Green CM, Lowndes NF (2001) Budding yeast Rad9 is an ATP-dependent Rad53 activating machine. Mol Cell 8:129–136

    Article  CAS  PubMed  Google Scholar 

  • Gilbert CS, van den Bosch M, Green CM, Vialard JE, Grenon M, Erdjument-Bromage H, Tempst P, Lowndes NF (2003) The budding yeast Rad9 checkpoint complex: chaperone proteins are required for its function. EMBO Rep 4:953–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graden JA, Winge DR (1997) Copper-mediated repression of the activation domain in the yeast Mac1p transcription factor. Proc Natl Acad Sci USA 94:5550–5555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Granata M, Lazzaro F, Novarina D, Panigada D, Puddu F, Abreu CM, Kumar R, Grenon M, Lowndes NF, Plevani P, Muzi-Falconi M (2010) Dynamics of Rad9 chromatin binding and checkpoint function are mediated by its dimerization and are cell cycle-regulated by CDK1 activity. PLoS Genet 6:e1001047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Green EM, Antczak AJ, Bailey AO, Franco AA, Wu KJ, Yates JR 3rd, Kaufman PD (2005) Replication-independent histone deposition by the HIR complex and Asf1. Curr Biol 15:2044–2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross C, Kelleher M, Iyer VR, Brown PO, Winge DR (2000) Identification of the copper regulon in Saccharomyces cerevisiae by DNA microarrays. J Biol Chem 275:32310–32316

    Article  CAS  PubMed  Google Scholar 

  • Gunjan A, Verreault A (2003) A Rad53 kinase-dependent surveillance mechanism that regulates histone protein levels in S. cerevisiae. Cell 115:537–549

    Article  CAS  PubMed  Google Scholar 

  • Hammet A, Magill C, Heierhorst J, Jackson SP (2007) Rad9 BRCT domain interaction with phosphorylated H2AX regulates the G1 checkpoint in budding yeast. EMBO Rep 8:851–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanway D, Chin JK, Xia G, Oshiro G, Winzeler EA, Romesberg FE (2002) Previously uncharacterized genes in the UV- and MMS-induced DNA damage response in yeast. Proc Natl Acad Sci USA 99:10605–10610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison JC, Haber JE (2006) Surviving the breakup: the DNA damage checkpoint. Annu Rev Genet 40:209–235

    Article  CAS  PubMed  Google Scholar 

  • Heredia J, Crooks M, Zhu Z (2001) Phosphorylation and Cu + coordination-dependent DNA binding of the transcription factor Mac1p in the regulation of copper transport. J Biol Chem 276:8793–8797

    Article  CAS  PubMed  Google Scholar 

  • Hill SJ, Rolland T, Adelmant G, Xia X, Owen MS, Dricot A, Zack TI, Sahni N, Jacob Y, Hao T, McKinney KM, Clark AP, Reyon D, Tsai SQ, Joung JK, Beroukhim R, Marto JA, Vidal M, Gaudet S, Hill DE et al (2014) Systematic screening reveals a role for BRCA1 in the response to transcription-associated DNA damage. Genes Dev 28:1957–1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huyen Y, Zgheib O, Ditullio RA Jr, Gorgoulis VG, Zacharatos P, Petty TJ, Sheston EA, Mellert HS, Stavridi ES, Halazonetis TD (2004) Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432:406–411

    Article  CAS  PubMed  Google Scholar 

  • Jensen LT, Winge DR (1998) Identification of a copper-induced intramolecular interaction in the transcription factor Mac1 from Saccharomyces cerevisiae. EMBO J 17:5400–5408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joo WS, Jeffrey PD, Cantor SB, Finnin MS, Livingston DM, Pavletich NP (2002) Structure of the 53BP1 BRCT region bound to p53 and its comparison to the Brca1 BRCT structure. Genes Dev 16:583–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi A, Serpe M, Kosman DJ (1999) Evidence for (Mac1p)2.DNA ternary complex formation in Mac1p-dependent transactivation at the CTR1 promoter. J Biol Chem 274:218–226

    Article  CAS  PubMed  Google Scholar 

  • Kilkenny ML, Dore AS, Roe SM, Nestoras K, Ho JC, Watts FZ, Pearl LH (2008) Structural and functional analysis of the Crb2-BRCT2 domain reveals distinct roles in checkpoint signaling and DNA damage repair. Genes Dev 22:2034–2047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kizer KO, Phatnani HP, Shibata Y, Hall H, Greenleaf AL, Strahl BD (2005) A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation. Mol Cell Biol 25:3305–3316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knop M, Siegers K, Pereira G, Zachariae W, Winsor B, Nasmyth K, Schiebel E (1999) Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15:963–972

    Article  CAS  PubMed  Google Scholar 

  • Komarnitsky P, Cho EJ, Buratowski S (2000) Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev 14:2452–2460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krum SA, Miranda GA, Lin C, Lane TF (2003) BRCA1 associates with processive RNA polymerase II. J Biol Chem 278:52012–52020

    Article  CAS  PubMed  Google Scholar 

  • Kuo MH, Allis CD (1999) In vivo cross-linking and immunoprecipitation for studying dynamic protein:DNA associations in a chromatin environment. Methods 19:425–433

    Article  CAS  PubMed  Google Scholar 

  • Lancelot N, Charier G, Couprie J, Duband-Goulet I, Alpha-Bazin B, Quemeneur E, Ma E, Marsolier-Kergoat MC, Ropars V, Charbonnier JB, Miron S, Craescu CT, Callebaut I, Gilquin B, Zinn-Justin S (2007) The checkpoint Saccharomyces cerevisiae Rad9 protein contains a tandem tudor domain that recognizes DNA. Nucleic Acids Res 35:5898–5912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lane TF (2004) BRCA1 and transcription. Cancer Biol Ther 3:528–533

    Article  CAS  PubMed  Google Scholar 

  • Leadon SA, Lawrence DA (1992) Strand-selective repair of DNA damage in the yeast GAL7 gene requires RNA polymerase II. J Biol Chem 267:23175–23182

    CAS  PubMed  Google Scholar 

  • Leshets M, Ramamurthy D, Lisby M, Lehming N, Pines O (2018) Fumarase is involved in DNA double-strand break resection through a functional interaction with Sae2. Curr Genet 64:697–712

    Article  CAS  PubMed  Google Scholar 

  • Li J, Stern DF (2005) DNA damage regulates Chk2 association with chromatin. J Biol Chem 280:37948–37956

    Article  CAS  PubMed  Google Scholar 

  • Li J, Xu X (2016) DNA double-strand break repair: a tale of pathway choices. Acta Biochim Biophys Sin (Shanghai) 48:641–646

    Article  CAS  Google Scholar 

  • Liang B, Qiu J, Ratnakumar K, Laurent BC (2007) RSC functions as an early double-strand-break sensor in the cell’s response to DNA damage. Curr Biol 17:1432–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisby M, Barlow JH, Burgess RC, Rothstein R (2004) Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118:699–713

    Article  CAS  PubMed  Google Scholar 

  • Longhese MP, Guerini I, Baldo V, Clerici M (2008) Surveillance mechanisms monitoring chromosome breaks during mitosis and meiosis. DNA Repair (Amst) 7:545–557

    Article  CAS  Google Scholar 

  • Ma JL, Lee SJ, Duong JK, Stern DF (2006) Activation of the checkpoint kinase Rad53 by the phosphatidyl inositol kinase-like kinase Mec1. J Biol Chem 281:3954–3963

    Article  CAS  PubMed  Google Scholar 

  • Marfella CG, Imbalzano AN (2007) The Chd family of chromatin remodelers. Mutat Res 618:30–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millan-Zambrano G, Santos-Rosa H, Puddu F, Robson SC, Jackson SP, Kouzarides T (2018) Phosphorylation of histone H4T80 triggers DNA damage checkpoint recovery. Mol Cell 72(625–635):e4

    Google Scholar 

  • Mochan TA, Venere M, DiTullio RA Jr, Halazonetis TD (2004) 53BP1, an activator of ATM in response to DNA damage. DNA Repair (Amst) 3:945–952

    Article  CAS  Google Scholar 

  • Moriel-Carretero M, Pasero P, Pardo B (2019) DDR Inc., one business, two associates. Curr Genet 65:445–451

    Article  CAS  PubMed  Google Scholar 

  • Morris DP, Michelotti GA, Schwinn DA (2005) Evidence that phosphorylation of the RNA polymerase II carboxyl-terminal repeats is similar in yeast and humans. J Biol Chem 280:31368–31377

    Article  CAS  PubMed  Google Scholar 

  • Mousson F, Ochsenbein F, Mann C (2007) The histone chaperone Asf1 at the crossroads of chromatin and DNA checkpoint pathways. Chromosoma 116:79–93

    Article  CAS  PubMed  Google Scholar 

  • Mullan PB, Quinn JE, Harkin DP (2006) The role of BRCA1 in transcriptional regulation and cell cycle control. Oncogene 25:5854–5863

    Article  CAS  PubMed  Google Scholar 

  • Nair N, Shoaib M, Sorensen CS (2017) Chromatin dynamics in genome stability: roles in suppressing endogenous DNA damage and facilitating DNA repair. Int J Mol Sci 18:E1486

    Article  PubMed  CAS  Google Scholar 

  • Ng HH, Ciccone DN, Morshead KB, Oettinger MA, Struhl K (2003) Lysine-79 of histone H3 is hypomethylated at silenced loci in yeast and mammalian cells: a potential mechanism for position-effect variegation. Proc Natl Acad Sci USA 100:1820–1825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Shaughnessy AM, Grenon M, Gilbert C, Toh GW, Green CM, Lowndes NF (2006) Multiple approaches to study S. cerevisiae Rad9, a prototypical checkpoint protein. Methods Enzymol 409:131–150

    Article  PubMed  CAS  Google Scholar 

  • Osley MA, Tsukuda T, Nickoloff JA (2007) ATP-dependent chromatin remodeling factors and DNA damage repair. Mutat Res 618:65–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan X, Ye P, Yuan DS, Wang X, Bader JS, Boeke JD (2006) A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 124:1069–1081

    Article  CAS  PubMed  Google Scholar 

  • Panier S, Boulton SJ (2014) Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol Cell Biol 15:7–18

    Article  CAS  PubMed  Google Scholar 

  • Pardo B, Crabbe L, Pasero P (2017) Signaling pathways of replication stress in yeast. FEMS Yeast Res. https://doi.org/10.1093/femsyr/fow101

    Article  PubMed  Google Scholar 

  • Pfander B, Diffley JF (2011) Dpb11 coordinates Mec1 kinase activation with cell cycle-regulated Rad9 recruitment. EMBO J 30:4897–4907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sau S, Kupiec M (2019) A role for the yeast PCNA unloader Elg1 in eliciting the DNA damage checkpoint. Curr Genet. https://doi.org/10.1128/mBio.01159-19

    Article  PubMed  Google Scholar 

  • Schiestl RH, Reynolds P, Prakash S, Prakash L (1989) Cloning and sequence analysis of the Saccharomyces cerevisiae RAD9 gene and further evidence that its product is required for cell cycle arrest induced by DNA damage. Mol Cell Biol 9:1882–1896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwabish MA, Struhl K (2006) Asf1 mediates histone eviction and deposition during elongation by RNA polymerase II. Mol Cell 22:415–422

    Article  CAS  PubMed  Google Scholar 

  • Scully R, Xie A, Nagaraju G (2004) Molecular functions of BRCA1 in the DNA damage response. Cancer Biol Ther 3:521–527

    Article  CAS  PubMed  Google Scholar 

  • Serpe M, Joshi A, Kosman DJ (1999) Structure-function analysis of the protein-binding domains of Mac1p, a copper-dependent transcriptional activator of copper uptake in Saccharomyces cerevisiae. J Biol Chem 274:29211–29219

    Article  CAS  PubMed  Google Scholar 

  • Sharma B, Preet Kaur R, Raut S, Munshi A (2018) BRCA1 mutation spectrum, functions, and therapeutic strategies: the story so far. Curr Probl Cancer 42:189–207

    Article  PubMed  Google Scholar 

  • Sharp JA, Rizki G, Kaufman PD (2005) Regulation of histone deposition proteins Asf1/Hir1 by multiple DNA damage checkpoint kinases in Saccharomyces cerevisiae. Genetics 171:885–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siede W, Friedberg AS, Friedberg EC (1993) RAD9-dependent G1 arrest defines a second checkpoint for damaged DNA in the cell cycle of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 90:7985–7989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smolka MB, Chen SH, Maddox PS, Enserink JM, Albuquerque CP, Wei XX, Desai A, Kolodner RD, Zhou H (2006) An FHA domain-mediated protein interaction network of Rad53 reveals its role in polarized cell growth. J Cell Biol 175:743–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smolka MB, Albuquerque CP, Chen SH, Zhou H (2007) Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases. Proc Natl Acad Sci USA 104:10364–10369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soulier J, Lowndes NF (1999) The BRCT domain of the S. cerevisiae checkpoint protein Rad9 mediates a Rad9-Rad9 interaction after DNA damage. Curr Biol 9:551–554

    Article  CAS  PubMed  Google Scholar 

  • Soutoglou E, Misteli T (2008) Activation of the cellular DNA damage response in the absence of DNA lesions. Science 320:1507–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stucki M, Jackson SP (2004) MDC1/NFBD1: a key regulator of the DNA damage response in higher eukaryotes. DNA Repair (Amst) 3:953–957

    Article  CAS  Google Scholar 

  • Sun Z, Hsiao J, Fay DS, Stern DF (1998) Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint [see comments]. Science 281:272–274

    Article  CAS  PubMed  Google Scholar 

  • Sweeney FD, Yang F, Chi A, Shabanowitz J, Hunt DF, Durocher D (2005) Saccharomyces cerevisiae Rad9 acts as a Mec1 adaptor to allow Rad53 activation. Curr Biol 15:1364–1375

    Article  CAS  PubMed  Google Scholar 

  • Terleth C, Schenk P, Poot R, Brouwer J, van de Putte P (1990) Differential repair of UV damage in rad mutants of Saccharomyces cerevisiae: a possible function of G2 arrest upon UV irradiation [published erratum appears in Mol Cell Biol 1991 Feb; 11(2):1184]. Mol Cell Biol 10:4678–4684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toh GW, O’Shaughnessy AM, Jimeno S, Dobbie IM, Grenon M, Maffini S, O’Rorke A, Lowndes NF (2006) Histone H2A phosphorylation and H3 methylation are required for a novel Rad9 DSB repair function following checkpoint activation. DNA Repair (Amst) 5:693–703

    Article  CAS  Google Scholar 

  • Usui T, Foster SS, Petrini JH (2009) Maintenance of the DNA-damage checkpoint requires DNA-damage-induced mediator protein oligomerization. Mol Cell 33:147–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van den Bosch M, Lowndes NF (2004) Remodelling the Rad9 checkpoint complex: preparing Rad53 for action. Cell Cycle 3:119–122

    Article  PubMed  Google Scholar 

  • van Hoffen A, Natarajan AT, Mayne LV, van Zeeland AA, Mullenders LH, Venema J (1993) Deficient repair of the transcribed strand of active genes in Cockayne’s syndrome cells. Nucleic Acids Res 21:5890–5895

    Article  PubMed  PubMed Central  Google Scholar 

  • Verstrepen KJ, Thevelein JM (2004) Controlled expression of homologous genes by genomic promoter replacement in the yeast Saccharomyces cerevisiae. Methods Mol Biol 267:259–266

    CAS  PubMed  Google Scholar 

  • Vialard JE, Gilbert CS, Green CM, Lowndes NF (1998) The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage. EMBO J 17:5679–5688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voutsina A, Fragiadakis GS, Boutla A, Alexandraki D (2001) The second cysteine-rich domain of Mac1p is a potent transactivator that modulates DNA binding efficiency and functionality of the protein. FEBS Lett 494:38–43

    Article  CAS  PubMed  Google Scholar 

  • Voutsina A, Fragiadakis GS, Gkouskou K, Alexandraki D (2019) Synergy of Hir1, Ssn6, and Snf2 global regulators is the functional determinant of a Mac1 transcriptional switch in S. cerevisiae copper homeostasis. Curr Genet 65:799–816

    Article  CAS  PubMed  Google Scholar 

  • Wan B, Wu J, Meng X, Lei M, Zhao X (2019) Molecular basis for control of diverse genome stability factors by the multi-BRCT Scaffold Rtt107. Mol Cell 75(238–251):e5

    Google Scholar 

  • Ward I, Kim JE, Minn K, Chini CC, Mer G, Chen J (2006) The tandem BRCT domain of 53BP1 is not required for its repair function. J Biol Chem 281:38472–38477

    Article  CAS  PubMed  Google Scholar 

  • Weber L, Byers B (1992) A RAD9-dependent checkpoint blocks meiosis of cdc13 yeast cells. Genetics 131:55–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weinert TA, Hartwell LH (1988) The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241:317–322

    Article  CAS  PubMed  Google Scholar 

  • Weinert T, Hartwell L (1989) Control of G2 delay by the rad9 gene of Saccharomyces cerevisiae. J Cell Sci Suppl 12:145–148

    Article  CAS  PubMed  Google Scholar 

  • Weinert TA, Hartwell LH (1990) Characterization of RAD9 of Saccharomyces cerevisiae and evidence that its function acts posttranslationally in cell cycle arrest after DNA damage. Mol Cell Biol 10:6554–6564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams RS, Lee MS, Hau DD, Glover JN (2004) Structural basis of phosphopeptide recognition by the BRCT domain of BRCA1. Nat Struct Mol Biol 11:519–525

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Lu LY, Yu X (2010) The role of BRCA1 in DNA damage response. Protein Cell 1:117–123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wysocki R, Javaheri A, Allard S, Sha F, Cote J, Kron SJ (2005) Role of Dot1-dependent histone H3 methylation in G1 and S phase DNA damage checkpoint functions of Rad9. Mol Cell Biol 25:8430–8443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia Z, Morales JC, Dunphy WG, Carpenter PB (2001) Negative cell cycle regulation and DNA damage-inducible phosphorylation of the BRCT protein 53BP1. J Biol Chem 276:2708–2718

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Iwai Y, Serpe M, Haile D, Yang W, Kosman DJ, Klausner RD, Dancis A (1997) Homeostatic regulation of copper uptake in yeast via direct binding of MAC1 protein to upstream regulatory sequences of FRE1 and CTR1. J Biol Chem 272:17711–17718

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Chini CC, He M, Mer G, Chen J (2003) The BRCT domain is a phospho-protein binding domain. Science 302:639–642

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Li R (2018) BRCA1-dependent transcriptional regulation: implication in tissue-specific tumor suppression. Cancers (Basel) 10:E513

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Iannis Talianidis and the late George Thireos for materials and helpful suggestions, Dennis Winge for Mac1up-expressing plasmids, the late Yannis Papanikolau and Androniki Kretsovali for advice on protein methodologies, Ioannis Kagiampakis and Christos Andreadis for communicating experimental data, and George A. Garinis for critical reading of the manuscript. Dedicated to the late Alexandros Argyrokastritis.

Funding

This work was supported by the Greek Ministry of Development-GSRT (IMBB funding and PENED grant 01ED119) and Greek Ministry of Education (PYTHAGORAS grant 89184).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Despina Alexandraki.

Additional information

Communicated by M. Kupiec.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gkouskou, K., Fragiadakis, G.S., Voutsina, A. et al. Distinct associations of the Saccharomyces cerevisiae Rad9 protein link Mac1-regulated transcription to DNA repair. Curr Genet 66, 531–548 (2020). https://doi.org/10.1007/s00294-019-01047-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-019-01047-w

Keywords

Navigation