Abstract
SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) facilitate intracellular vesicle trafficking and membrane fusion in eukaryotic cells, and play a vital role in growth, development and pathogenicity of phytopathogens. Fusarium head blight (FHB) caused by F. graminearum is one of the most devastating diseases of wheat and barley worldwide. Sec22 is a member of the SNARE family of proteins and its homologues have been shown to have diverse biological roles in different organisms. However, the functions of this protein in the development and pathogenesis of F. graminearum are currently unknown. In this study, we employed integrated biochemical, microbiological and molecular genetic approaches to investigate the roles of FgSec22 in F. graminearum. Our data reveal that this SNARE protein is localized to endoplasmic reticulum (ER) and is indispensable for normal conidiation, conidial morphology and pathogenesis of this phytopathogenic fungus. Our biochemical assay of deoxynivalenol (DON) reveals the active involvement of this protein in the production of this mycotoxin in F. graminearum. This has further been confirmed by qRT-PCR analyses of trichothecene (TRI) genes’ expression where the ΔFgsec22 deletion mutant demonstrated a significant down-regulation of these genes in comparison to the wild-type PH-1. Unlike the wild-type and the complemented strain, the mutant strain presents a remarkable defect in colony formation which reflects the critical role it plays in vegetative growth. Collectively, our data support that the SNARE protein FgSec22 is required for vegetative growth, pathogenesis and DON biosynthesis in F. graminearum.







Similar content being viewed by others

Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Adnan M, Zheng W, Islam W, Arif M, Abubakar YS, Wang Z, Lu G (2018) Carbon catabolite repression in filamentous Fungi. Int J Mol Sci 19:48
Alexander NJ, McCormick SP, Hohn TM (1999) TRI12, a trichothecene efflux pump from Fusarium sporotrichioides: gene isolation and expression in yeast. Mol Gen Genet 261:977–984
Alexander NJ, Proctor RH, McCormick SP (2009) Genes, gene clusters, and biosynthesis of trichothecenes and fumonisins in Fusarium. Toxin Rev. 28:198–215
Audenaert K, Vanheule A, Höfte M, Haesaert G (2013) Deoxynivalenol: a major player in the multifaceted response of Fusarium to its environment. Toxins (Basel) 6:1–19
Baker RW, Hughson FM (2016) Chaperoning SNARE assembly and disassembly. Nat Rev Mol Cell Biol 17:465
Bao J, Huang M, Petranovic D, Nielsen J (2018) Balanced trafficking between the ER and the Golgi apparatus increases protein secretion in yeast. AMB Express 8:37
Bas L, Papinski D, Licheva M, Torggler R, Rohringer S, Schuschnig M, Kraft C (2018) Reconstitution reveals Ykt6 as the autophagosomal SNARE in autophagosome-vacuole fusion. J Cell Biol 217:3656–3669
Boenisch MJ, Broz KL, Purvine SO, Chrisler WB, Nicora CD, Connolly LR, Freitag M, Baker SE, Kistler HC (2017) Structural reorganization of the fungal endoplasmic reticulum upon induction of mycotoxin biosynthesis. Sci Rep 7:44296
Brandizzi F, Barlowe C (2013) Organization of the ER-Golgi interface for membrane traffic control. Nat Rev Mol Cell Biol 14:382–392
Catlett NL, Lee B-N, Yoder OC, Turgeon BG (2003) Split-marker recombination for efficient targeted deletion of fungal genes. Fungal Genet Rep 50:9–11
Chatre L, Brandizzi F, Hocquellet A, Hawes C, Moreau P (2005) Sec22 and Memb11 are v-SNAREs of the anterograde endoplasmic reticulum-Golgi pathway in tobacco leaf epidermal cells. Plant Physiol 139:1244–1254
Chen S, Novick P, Ferro-Novick S (2013) ER structure and function. Curr Opin Cell Biol 25:428–433
Chen L, Tong Q, Zhang C, Ding K (2019) The transcription factor FgCrz1A is essential for fungal development, virulence, deoxynivalenol biosynthesis and stress responses in Fusarium graminearum. Curr Genet 65:153–166
Chi MH, Park SY, Kim S, Lee YH (2009) A novel pathogenicity gene is required in the rice blast fungus to suppress the basal defenses of the host. PLoS Pathog 5:e1000401
Choi Y-E, Xu J-R (2010) The cAMP signaling pathway in Fusarium verticillioides is important for conidiation, plant infection, and stress responses but not fumonisin production. Mol Plant Microbe Interact 23:522–533
Choi UB, Zhao M, White KI, Zhou Q, Pfuetzner R, Brunger AT (2018) Single SNARE complex recycling by NSF. Biophys J 114:282a
Ding S, Mehrabi R, Koten C, Kang Z, Wei Y, Seong K, Kistler HC, Xu J-R (2009) Transducin beta-like gene FTL1 is essential for pathogenesis in Fusarium graminearum. Eukaryot Cell 8:867–876
Dou X, Wang Q, Qi Z, Song W, Wang W, Guo M, Zhang H, Zhang Z, Wang P, Zheng X (2011) MoVam7, a conserved SNARE involved in vacuole assembly, is required for growth, endocytosis, ROS accumulation, and pathogenesis of Magnaporthe oryzae. PLoS One 6:e16439
Dräxl S, Müller J, Li WB, Michalke B, Scherb H, Hense BA, Tschiersch J, Kanter U, Schäffner AR (2013) Caesium accumulation in yeast and plants is selectively repressed by loss of the SNARE Sec22p/SEC22. Nat Commun 4:2092
El-Hasan A, Schöne J, Höglinger B, Walker F, Voegele RT (2018) Assessment of the antifungal activity of selected biocontrol agents and their secondary metabolites against Fusarium graminearum. Eur J Plant Pathol 150:91–103
El-Kasmi F, Pacher T, Strompen G, Stierhof YD, Müller LM, Koncz C, Mayer U, Jürgens G (2011) Arabidopsis SNARE protein SEC22 is essential for gametophyte development and maintenance of Golgi-stack integrity. Plant J 66(2):268–279
Flanagan JJ, Mukherjee I, Barlowe C (2015) Examination of Sec22 homodimer formation and role in SNARE-dependent membrane fusion. J Biol Chem 290:10657–10666
Gao HM, Liu XG, Shi HB, Lu JP, Yang J, Lin FC, Liu XH (2013) MoMon1 is required for vacuolar assembly, conidiogenesis and pathogenicity in the rice blast fungus Magnaporthe oryzae. Res Microbiol 164:300–309
Gardiner DM, Kazan K, Manners JM (2009) Nutrient profiling reveals potent inducers of trichothecene biosynthesis in Fusarium graminearum. Fungal Genet Biol 46:604–613
Goswami RS, Kistler HC (2004) Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol 5:515–525
Guo L, Wenner N, Kuldau GA (2015) FvSO regulates vegetative hyphal fusion, asexual growth, fumonisin B1 production, and virulence in Fusarium verticillioides. Fungal Biol 119:1158–1169
Han J, Pluhackova K, Böckmann RA (2017) The multifaceted role of SNARE proteins in membrane fusion. Front Physiol 8:5
Hong S-YY, So J, Lee J, Min K, Son H, Park C, Yun S-HH, Lee Y-WW (2010) Functional analyses of two syntaxin-like SNARE genes, GzSYN1 and GzSYN2, in the ascomycete Gibberella zeae. Fungal Genet Biol 47:364–372
Hou Z, Xue C, Peng Y, Katan T, Kistler HC, Xu J-R (2002) A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Mol Plant Microbe Interact 15:1119–1127
Hu S, Zhou X, Gu X, Cao S, Wang C, Xu JR (2014) The cAMP-PKA pathway regulates growth, sexual and asexual differentiation, and pathogenesis in fusarium graminearum. Mol Plant Microbe Interact 27:557–566
Irieda H, Maeda H, Akiyama K, Hagiwara A, Saitoh H, Uemura A, Terauchi R, Takano Y (2014) Colletotrichum orbiculare secretes virulence effectors to a biotrophic interface at the primary hyphal neck via exocytosis coupled with SEC22-mediated traffic. Plant Cell 26:2265–2281
Jenczmionka NJ, Schäfer W (2005) The Gpmk1 MAP kinase of Fusarium graminearum regulates the induction of specific secreted enzymes. Curr Genet 47:29–36
Jiang C, Zhang C, Wu C, Sun P, Hou R, Liu H, Wang C, Xu J (2016) TRI6 and TRI10 play different roles in the regulation of deoxynivalenol (DON) production by cAMP signalling in Fusarium graminearum. Environ Microbiol 18:3689–3701
Jonkers W, Dong Y, Broz K, Kistler HC (2012) The Wor1-like protein Fgp1 regulates pathogenicity, toxin synthesis and reproduction in the phytopathogenic fungus Fusarium graminearum. PLoS Pathog 8:e1002724
Kang’ethe EK, Sirma AJ, Murithi G, Mburugu-Mosoti CK, Ouko EO, Korhonen HJ, Nduhiu GJ, Mungatu JK, Joutsjoki V, Lindfors E (2017) Occurrence of mycotoxins in food, feed, and milk in two counties from different agro-ecological zones and with historical outbreak of aflatoxins and fumonisins poisonings in Kenya. Food Qual Saf 1:161–170
Karnahl M, Park M, Krause C, Hiller U, Mayer U, Stierhof Y-D, Jürgens G (2018) Functional diversification of Arabidopsis SEC1-related SM proteins in cytokinetic and secretory membrane fusion. Proc Natl Acad Sci 115:6309–6314
Kazan K, Gardiner DM, Manners JM (2012) On the trail of a cereal killer: recent advances in Fusarium graminearum pathogenomics and host resistance. Mol Plant Pathol 13:399–413
Kulik T, Buśko M, Pszczółkowska A, Perkowski J, Okorski A (2014) Plant lignans inhibit growth and trichothecene biosynthesis in fusarium graminearum. Lett Appl Microbiol 59:99–107
Kurokawa K, Okamoto M, Nakano A (2014) Contact of cis-Golgi with ER exit sites executes cargo capture and delivery from the ER. Nat Commun 5:3653
Lee H, Noh H, Mun J, Gu C, Sever S, Park S (2016) Anks1a regulates COPII-mediated anterograde transport of receptor tyrosine kinases critical for tumorigenesis. Nat Commun 7:12799
Lerich A, Hillmer S, Langhans M, Scheuring D, van Bentum P, Robinson DG (2012) ER import sites and their relationship to ER exit sites: a new model for bidirectional ER-Golgi transport in higher plants. Front Plant Sci 3:143
Li X, Wu Y, Shen C, Belenkaya TY, Ray L, Lin X (2015) Drosophila p24 and Sec22 regulate Wingless trafficking in the early secretory pathway. Biochem Biophys Res Commun 463:483–489
Lv W, Wu J, Xu Z, Dai H, Ma Z, Wang Z (2019) The putative histone-like transcription factor FgHltf1 is required for vegetative growth, sexual reproduction, and virulence in Fusarium graminearum. Curr Genet 65:981–994
Maeda K, Nakajima Y, Motoyama T, Kitou Y, Kosaki T, Saito T, Nishiuchi T, Kanamaru K, Osada H, Kobayashi T (2014) Effects of acivicin on growth, mycotoxin production and virulence of phytopathogenic fungi. Lett Appl Microbiol 59:377–383
Maeda K, Nakajima Y, Tanahashi Y, Kitou Y, Miwa A, Kanamaru K, Kobayashi T, Nishiuchi T, Kimura M (2017) l-Threonine and its analogue added to autoclaved solid medium suppress trichothecene production by Fusarium graminearum. Arch Microbiol 199:945–952
Magan N, Medina A (2016) Integrating gene expression, ecology and mycotoxin production by Fusarium and Aspergillus species in relation to interacting environmental factors. World Mycotoxin J 9:673–684
McCormick SP, Harris LJ, Alexander NJ, Ouellet T, Saparno A, Allard S, Desjardins AE (2004) Tri1 in Fusarium graminearum encodes a P450 oxygenase. Appl Environ Microbiol 70:2044–2051
Menke J, Dong Y, Kistler HC (2012) Fusarium graminearum Tri12p influences virulence to wheat and trichothecene accumulation. Mol Plant Microbe Interact 25:1408–1418
Nair U, Klionsky DJ (2011) Autophagosome biogenesis requires SNAREs. Autophagy 7(12):1570–1572
Pani G, Scherm B, Azara E, Balmas V, Jahanshiri Z, Carta P, Fabbri D, Dettori MA, Fadda A, Dessì A (2014) Natural and natural-like phenolic inhibitors of type B trichothecene in vitro production by the wheat (Triticum sp.) pathogen Fusarium culmorum. J Agric Food Chem 62:4969–4978
Paul PA, Lipps PE, Hershman DE, McMullen MP, Draper MA, Madden LV (2008) Efficacy of triazole-based fungicides for Fusarium head blight and deoxynivalenol control in wheat: a multivariate meta-analysis. Phytopathology 98:999–1011
Qin J, Wang G, Jiang C, Xu JR, Wang C (2015) Fgk3 glycogen synthase kinase is important for development, pathogenesis, and stress responses in Fusarium graminearum. Sci Rep 5:8504
Sharma KK, Pothana A, Prasad K, Shah D, Kaur J, Bhatnagar D, Chen ZY, Raruang Y, Cary JW, Rajasekaran K et al (2018) Peanuts that keep aflatoxin at bay: a threshold that matters. Plant Biotechnol J 16:1024–1033
Shen L, Yang S, Yang T, Liang J, Cheng W, Wen J, Liu Y, Li J, Shi L, Tang Q et al (2016) CaCDPK15 positively regulates pepper responses to Ralstonia solanacearum inoculation and forms a positive-feedback loop with CaWRKY40 to amplify defense signaling. Sci Rep 6:22439
Sobrova P, Adam V, Vasatkova A, Beklova M, Zeman L, Kizek R (2010) Deoxynivalenol and its toxicity. Interdiscip Toxicol 3:94–99
Song W, Dou X, Qi Z, Wang Q, Zhang X, Zhang H, Guo M, Dong S, Zhang Z, Wang P (2010) R-SNARE homolog MoSec22 is required for conidiogenesis, cell wall integrity, and pathogenesis of Magnaporthe oryzae. PLoS One 5:e13193
Spang A (2013) Retrograde traffic from the Golgi to the endoplasmic reticulum. Cold Spring Harb Perspect Biol 5:a013391
Tang W, Ru Y, Hong L, Zhu Q, Zuo R, Guo X, Wang J, Zhang H, Zheng X, Wang P et al (2015) System-wide characterization of bZIP transcription factor proteins involved in infection-related morphogenesis of Magnaporthe oryzae. Environ Microbiol 17:1377–1396
Tokai T, Koshino H, Takahashi-Ando N, Sato M, Fujimura M, Kimura M (2007) Fusarium Tri4 encodes a key multifunctional cytochrome P450 monooxygenase for four consecutive oxygenation steps in trichothecene biosynthesis. Biochem Biophys Res Commun 353:412–417
Traeger S, Nowrousian M (2015) Functional analysis of developmentally Regulated genes chs7 and sec22 in the Ascomycete Sordaria macrospora. G3 (Bethesda) 5:1233–1245
Tralamazza SM, Bemvenuti RH, Zorzete P, de Souza Garcia F, Corrêa B (2016) Fungal diversity and natural occurrence of deoxynivalenol and zearalenone in freshly harvested wheat grains from Brazil. Food Chem 196:445–450
Varga J, Tóth B, Mesterházy Á, Téren J, Fazekas B (2004) Mycotoxigenic fungi and mycotoxins in foods and feeds in Hungary. In: Logrieco A, Visconti A (eds) An overview on toxigenic fungi and mycotoxins in Europe. Kluwer Academic Publishers, The Netherlands, pp 123–139
Wang J, Tian L, Zhang D-D, Short DPG, Zhou L, Song S-S, Liu Y, Wang D, Kong Z-Q, Cui W-Y (2018) SNARE-encoding genes VdSec22 and VdSso1 mediate protein secretion required for full virulence in Verticillium dahliae. Mol Plant Microbe Interact 31:651–664
Wedlich-Soldner R (2002) A putative endosomal t-SNARE links exo- and endocytosis in the phytopathogenic fungus Ustilago maydis. EMBO J 19:1974–1986
Xie Q, Chen A, Zhang Y, Zhang C, Hu Y, Luo Z, Wang B, Yun Y, Zhou J, Li G et al (2019) ESCRT-III accessory proteins regulate fungal development and plant infection in Fusarium graminearum. Curr Genet 65:1041–1055
Xu L, Wang M, Tang G, Ma Z, Shao W (2019) The endocytic cargo adaptor complex is required for cell-wall integrity via interacting with the sensor FgWsc2B in Fusarium graminearum. Curr Genet 65:1071–1080
Yang W, Cao X, Li X (2017) Enhanced simultaneous overlap extension-PCR by gold nanoparticles. Nanomedicine 13:2263–2266
Yang P, Chen Y, Wu H, Fang W, Liang Q, Zheng Y, Olsson S, Zhang D, Zhou J, Wang Z et al (2018) The 5-oxoprolinase is required for conidiation, sexual reproduction, virulence and deoxynivalenol production of Fusarium graminearum. Curr Genet 64:285–301
Yin T, Zhang Q, Wang J, Liu H, Wang C, Xu JR, Jiang C (2018) The cyclase-associated protein FgCap1 has both protein kinase A-dependent and-independent functions during deoxynivalenol production and plant infection in Fusarium graminearum. Mol Plant Pathol 19:552–563
Yu J-HH, Hamari Z, Han K-HH, Seo J-AA, Reyes-Domínguez Y, Scazzocchio C (2004) Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol 41:973–981
Yuen GY, Schoneweis SD (2007) Strategies for managing Fusarium head blight and deoxynivalenol accumulation in wheat. Int J Food Microbiol 119:126–130
Zhang H, Li B, Fang Q, Li Y, Zheng X, Zhang Z (2016) SNARE protein FgVam7 controls growth, asexual and sexual development, and plant infection in Fusarium graminearum. Mol Plant Pathol 17:108–119
Zhang L, Liu C, Wang L, Sun S, Liu A, Liang Y, Yu J, Dong H (2019a) FgPEX1 and FgPEX10 are required for the maintenance of Woronin bodies and full virulence of Fusarium graminearum. Curr Genet 65:1383–1396
Zhang L, Wang L, Liang Y, Yu J (2019b) FgPEX4 is involved in development, pathogenicity, and cell wall integrity in Fusarium graminearum. Curr Genet 65:747–758
Zhao X, Yang H, Liu W, Duan X, Shang W, Xia D, Tong C (2015) Sec22 regulates endoplasmic reticulum morphology but not autophagy and is required for eye development in Drosophila. J Biol Chem 290:7943–7951
Zhao Y, Holmgren BT, Hinas A (2017) The conserved SNARE SEC-22 localizes to late endosomes and negatively regulates RNA interference in Caenorhabditis elegans. RNA 23:297–307
Zheng D, Zhang S, Zhou X, Wang C, Xiang P, Zheng Q, Xu J-R (2012) The FgHOG1 pathway regulates hyphal growth, stress responses, and plant infection in Fusarium graminearum. PLoS One 7:e49495
Zheng H, Miao P, Lin X, Li L, Wu C, Chen X, Abubakar YS, Norvienyeku J, Li G, Zhou J (2018) Small GTPase Rab7-mediated FgAtg9 trafficking is essential for autophagy-dependent development and pathogenicity in Fusarium graminearum. PLoS Genet 14:e1007546
Acknowledgements
We really appreciate Prof. Zonghua Wang (Fujian Agriculture and Forestry University), Prof. Daniel J. Ebbole (Texas A&M University), Prof. Stefan Olsson (Fujian Agriculture and Forestry University) and Dr. Justice Norvienyeku (Fujian Agriculture and Forestry University) for their valuable suggestions and fruitful discussions.
Author information
Authors and Affiliations
Contributions
Conceptualization: MA, WZ, GL; data curation: MA, YZ, YS, YL, WF, JZ; formal analysis: MA, YZ, YS, JZ; funding acquisition: WZ, GL; investigation: MA, YZ, YL, WF, JZ; methodology: MA, YZ, YL, WF, JZ; supervision: WZ, GL; validation: YL, WZ, GL; visualization: MA, YZ, WZ, GL; writing—original draft: MA, YS, WZ, GL; writing—review and editing: YZ, YL, YS, WF, JZ.
Corresponding authors
Additional information
Communicated by M. Kupiec.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Fig. S1.
Phylogenetic analysis and domain architecture of FgSec22 and its orthologs. Phylogenetic tree of Sec22 from fungi to mammals was constructed based on the alignment of sequences of Sec22. The neighbor-joining tree was built with MEGA7 software based on the amino acid sequence of Sec22 from each species. The conserved regions or domains are represented with different colored boxes
Fig. S2
Gene knockout and southern blot analysis of ΔFgsec22 mutant in F. graminearum. A. Split marker approach was adopted to generate ΔFgsec22 gene knockout using HPH sequence instead of FgSEC22 in the wild-type PH-1 of F. graminearum. B. Southern blot analysis of FgSEC22 gene deletion. FgSEC22 deletion mutants were confirmed by southern blot analysis, DNA was digested using Xho I and Hind III restriction enzymes. FgSec22-AF (1F) and FgSec22-AR (2R) primer pair was used to amplify the upstream region of respective gene and used this fragment as a probe during hybridization
Fig. S3.
Sexual reproduction of F. graminearumA. Carrot agar plates, black perithecia were formed on carrot agar 21 dpi. B. Cirri (masses of ascospores) formed on top of perithecium of PH-1 and ΔFgsec22-Com complemented strains and perithecium of ΔFgsec22 mutant strain as well. C. Fascicles of asci observed under microscope after squeezing the perithecia. Sexual reproduction revealed that there was no obvious variation among the wild-type and mutant strains. The carrot agar plates produced abundant perithecia in all strains. Similarly, cirri were also observed in all strains. Particular rosette-like morphology of asci was observed after breaking the perithecium in all of the strains
Rights and permissions
About this article
Cite this article
Adnan, M., Fang, W., Sun, P. et al. R-SNARE FgSec22 is essential for growth, pathogenicity and DON production of Fusarium graminearum. Curr Genet 66, 421–435 (2020). https://doi.org/10.1007/s00294-019-01037-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00294-019-01037-y

