Skip to main content
Log in

Analyzing chromosome condensation in yeast by second-harmonic generation microscopy

  • Technical Note
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Condensation is a fundamental property of mitotic chromosomes in eukaryotic cells. However, analyzing chromosome condensation in yeast is a challenging task while existing methods have notable weaknesses. Second-harmonic generation (SHG) microscopy is a label-free, advanced imaging technique for measuring the surface curve of isotropic molecules such as chromatin in live cells. We applied this method to detect changes in chromatin organization throughout the cell cycle in live yeast cells. We showed that SHG microscopy can be used to identify changes in chromatin organization throughout the cell cycle and in response to inactivation of the SMC complexes, cohesin and condensin. Implementation of this method will improve our ability to analyze chromatin structure in protozoa and will enhance our understanding of chromatin organization in eukaryotic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Antonin W, Neumann H (2016) Chromosome condensation and decondensation during mitosis. Curr Opin Cell Biol 40:15–22

    Article  CAS  Google Scholar 

  • Boginya A, Detroja R, Matityahu A, Frenkel-Morgenstern M, Onn I (2019) The chromatin remodeler Chd1 regulates cohesin in budding yeast and humans. Sci Rep 9(1):8929

    Article  Google Scholar 

  • Ciosk R, Shirayama M, Shevchenko A, Tanaka T, Toth A, Shevchenko A, Nasmyth K (2000) Cohesin’s binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol Cell 5:243–254

    Article  CAS  Google Scholar 

  • de Hoogh A, Opheij A, Wulf M, Rotenberg N, Kuipers L (2016) Harmonics generation by surface plasmon polaritons on single nanowires. ACS Photonics 3:1446–1452

    Article  Google Scholar 

  • Fine S, Hansen WP (1971) Optical second harmonic generation in biological systems. Appl Opt 10:2350–2353

    Article  CAS  Google Scholar 

  • Gard S, Light W, Xiong B, Bose T, McNairn AJ, Harris B, Fleharty B, Seidel C, Brickner JH, Gerton JL (2009) Cohesinopathy mutations disrupt the subnuclear organization of chromatin. J Cell Biol 187:455–462

    Article  CAS  Google Scholar 

  • Gibcus JH, Samejima K, Goloborodko A, Samejima I, Naumova N, Nuebler J, Kanemaki MT, Xie L, Paulson JR, Earnshaw WC et al (2018) A pathway for mitotic chromosome formation. Science 359:eaao6135

    Article  Google Scholar 

  • Guacci V, Hogan E, Koshland D (1994) Chromosome condensation and sister chromatid pairing in budding yeast. J Cell Biol 125:517–530

    Article  CAS  Google Scholar 

  • Haering CH, Lowe J, Hochwagen A, Nasmyth K (2002) Molecular architecture of SMC proteins and the yeast cohesin complex. Mol Cell 9:773–788

    Article  CAS  Google Scholar 

  • Hassler M, Shaltiel IA, Haering CH (2018) Towards a unified model of SMC complex function. Curr Biol 28:R1266–R1281

    Article  CAS  Google Scholar 

  • Hirano T, Kobayashi R, Hirano M (1997) Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein. Cell 89:511–521

    Article  CAS  Google Scholar 

  • Kakui Y, Uhlmann F (2018) SMC complexes orchestrate the mitotic chromatin interaction landscape. Curr Genet 64:335–339

    Article  CAS  Google Scholar 

  • Kakui Y, Rabinowitz A, Barry DJ, Uhlmann F (2017) Condensin-mediated remodeling of the mitotic chromatin landscape in fission yeast. Nat Genet 49:1553–1557

    Article  CAS  Google Scholar 

  • Lavoie BD, Tuffo KM, Oh S, Koshland D, Holm C (2000) Mitotic chromosome condensation requires Brn1p, the yeast homologue of Barren. Mol Biol Cell 11:1293–1304

    Article  CAS  Google Scholar 

  • Lavoie BD, Hogan E, Koshland D (2002) In vivo dissection of the chromosome condensation machinery: reversibility of condensation distinguishes contributions of condensin and cohesin. J Cell Biol 156:805–815

    Article  CAS  Google Scholar 

  • Lavoie BD, Hogan E, Koshland D (2004) In vivo requirements for rDNA chromosome condensation reveal two cell-cycle-regulated pathways for mitotic chromosome folding. Genes Dev 18:76–87

    Article  CAS  Google Scholar 

  • Litwin I, Wysocki R (2018) New insights into cohesin loading. Curr Genet 64:53–61

    Article  CAS  Google Scholar 

  • Liu J, Krantz ID (2008) Cohesin and human disease. Annu Rev Genomics Hum Genet 9:303–320

    Article  CAS  Google Scholar 

  • Losada A, Hirano M, Hirano T (1998) Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev 12:1986–1997

    Article  CAS  Google Scholar 

  • Machin F, Torres-Rosell J, Jarmuz A, Aragon L (2005) Spindle-independent condensation-mediated segregation of yeast ribosomal DNA in late anaphase. J Cell Biol 168:209–219

    Article  CAS  Google Scholar 

  • Naumova N, Imakaev M, Fudenberg G, Zhan Y, Lajoie BR, Mirny LA, Dekker J (2013) Organization of the mitotic chromosome. Science 342:948–953

    Article  CAS  Google Scholar 

  • Orgil O, Matityahu A, Eng T, Guacci V, Koshland D, Onn I (2015) A conserved domain in the scc3 subunit of cohesin mediates the interaction with both mcd1 and the cohesin loader complex. PLoS Genet 11:e1005036

    Article  Google Scholar 

  • Orgil O, Mor H, Matityahu A, Onn I (2016) Identification of a region in the coiled-coil domain of Smc3 that is essential for cohesin activity. Nucleic Acids Res 44:6309–6317

    Article  CAS  Google Scholar 

  • Paul MR, Hochwagen A, Ercan S (2019) Condensin action and compaction. Curr Genet 65:407–415

    Article  CAS  Google Scholar 

  • Petrova B, Dehler S, Kruitwagen T, Heriche JK, Miura K, Haering CH (2013) Quantitative analysis of chromosome condensation in fission yeast. Mol Cell Biol 33:984–998

    Article  CAS  Google Scholar 

  • Pinon R (1978) Folded chromosomes in non-cycling yeast cells: evidence for a characteristic g0 form. Chromosoma 67:263–274

    Article  CAS  Google Scholar 

  • Rehberg M, Krombach F, Pohl U, Dietzel S (2011) Label-free 3D visualization of cellular and tissue structures in intact muscle with second and third harmonic generation microscopy. PLoS One 6:e28237

    Article  CAS  Google Scholar 

  • Robellet X, Vanoosthuyse V, Bernard P (2017) The loading of condensin in the context of chromatin. Curr Genet 63:577–589

    Article  CAS  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  Google Scholar 

  • Sharp LW (1934) Introduction to cytology. McGraw-Hill Book Company, Inc, New York

    Google Scholar 

  • Shwartz M, Matityahu A, Onn I (2016) Identification of functional domains in the cohesin loader subunit Scc4 by a random insertion/dominant negative screen. G3 (Bethesda) 6:2655–2663

    Article  CAS  Google Scholar 

  • Tanizawa H, Kim KD, Iwasaki O, Noma KI (2017) Architectural alterations of the fission yeast genome during the cell cycle. Nat Struct Mol Biol 24:965–976

    Article  CAS  Google Scholar 

  • van Ruiten MS, Rowland BD (2018) SMC complexes: universal DNA looping machines with distinct regulators. Trends Genet 34:477–487

    Article  Google Scholar 

  • Vas AC, Andrews CA, Kirkland Matesky K, Clarke DJ (2007) In vivo analysis of chromosome condensation in Saccharomyces cerevisiae. Mol Biol Cell 18:557–568

    Article  CAS  Google Scholar 

  • Zhuo S, Chen J, Jiang X, Xie S, Chen R, Cao N, Zou Q, Xiong S (2007) The layered-resolved microstructure and spectroscopy of mouse oral mucosa using multiphoton microscopy. Phys Med Biol 52:4967–4980

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Jennifer Gerton and Maya Schuldiner for providing yeast strains. Eyla Maoz and Yehuda Gabay for their help with cell cytometry. We also thank members of the Onn lab for their support.

Funding

This work was supported by the Israel Science Foundation Grant 1099/16 (IO)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itay Onn.

Additional information

Communicated by M. Kupiec.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 4962 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamin, K., Assa, M., Matityahu, A. et al. Analyzing chromosome condensation in yeast by second-harmonic generation microscopy. Curr Genet 66, 437–443 (2020). https://doi.org/10.1007/s00294-019-01034-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-019-01034-1

Keywords

Navigation