Al-Reedy RM, Malireddy R, Dillman CB, Kennell JC (2012) Comparative analysis of Fusarium mitochondrial genomes reveals a highly variable region that encodes an exceptionally large open reading frame. Fungal Genet Biol 49:2–14. https://doi.org/10.1016/j.fgb.2011.11.008
CAS
Article
PubMed
Google Scholar
Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
CAS
Article
PubMed
Google Scholar
Apweiler R, Attwood TK, Bairoch A et al (2000) InterPro–an integrated documentation resource for protein families, domains and functional sites. Bioinformatics 16:1145–1150
CAS
Article
PubMed
Google Scholar
Bachmann BO, Ravel J (2009) Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. Methods Enzymol 458:181–217. https://doi.org/10.1016/S0076-6879(09)04808-3
CAS
Article
PubMed
Google Scholar
Bahadoor A, Brauer EK, Bosnich W et al (2018) Gramillin A and B: cyclic lipopeptides identified as the nonribosomal biosynthetic products of Fusarium graminearum. J Am Chem Soc. https://doi.org/10.1021/jacs.8b10017
Article
PubMed
Google Scholar
Becker DM, Lundblad V (2001) Introduction of DNA into yeast cells. Curr Protoc Mol Biol. https://doi.org/10.1002/0471142727.mb1307s27
Article
PubMed
Google Scholar
Bentley R, Bennett JW (1999) Constructing polyketides: from collie to combinatorial biosynthesis. Annu Rev Microbiol 53:411–446. https://doi.org/10.1146/annurev.micro.53.1.411
CAS
Article
PubMed
Google Scholar
Blin K, Wolf T, Chevrette MG et al (2017) AntiSMASH 4.0—improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res 45:W36–W41. https://doi.org/10.1093/nar/gkx319
CAS
Article
PubMed
PubMed Central
Google Scholar
Bode HB, Bethe B, Höfs R, Zeeck A (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. ChemBioChem 3:619. https://doi.org/10.1002/1439-7633(20020703)3:7%3c619:AID-CBIC619%3e3.0.CO;2-9
CAS
Article
PubMed
Google Scholar
Bok J, Keller N (2004) LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot Cell 3:527–535. https://doi.org/10.1128/EC.3.2.527-535.2004
CAS
Article
PubMed
PubMed Central
Google Scholar
Bömke C, Tudzynski B (2009) Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry 70:1876–1893. https://doi.org/10.1016/j.phytochem.2009.05.020
CAS
Article
PubMed
Google Scholar
Brakhage AA (2013) Regulation of fungal secondary metabolism. Nat Rev Microbiol 11:21–32. https://doi.org/10.1038/nrmicro2916
CAS
Article
PubMed
Google Scholar
Brock NL, Huss K, Tudzynski B, Dickschat JS (2013) Genetic dissection of sesquiterpene biosynthesis by Fusarium fujikuroi. ChemBioChem 14:311–315. https://doi.org/10.1002/cbic.201200695
CAS
Article
PubMed
Google Scholar
Brown DW, Proctor RH (2016) Insights into natural products biosynthesis from analysis of 490 polyketide synthases from Fusarium. Fungal Genet Biol 89:37–51. https://doi.org/10.1016/j.fgb.2016.01.008
CAS
Article
PubMed
Google Scholar
Brown DW, Yu JH, Kelkar HS et al (1996) Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans. Proc Natl Acad Sci USA 93:1418–1422
CAS
Article
PubMed
PubMed Central
Google Scholar
Brown DW, Butchko RAE, Busman M, Proctor RH (2007) The Fusarium verticillioides FUM gene cluster encodes a Zn(II)2Cys6 protein that affects FUM gene expression and fumonisin production. Eukaryot Cell 6:1210–1218. https://doi.org/10.1128/EC.00400-06
CAS
Article
PubMed
PubMed Central
Google Scholar
Brown DW, Butchko RAE, Busman M, Proctor RH (2012) Identification of gene clusters associated with fusaric acid, fusarin, and perithecial pigment production in Fusarium verticillioides. Fungal Genet Biol 49:521–532. https://doi.org/10.1016/j.fgb.2012.05.010
CAS
Article
PubMed
Google Scholar
Brown DW, Busman M, Proctor RH (2014) Fusarium verticillioides SGE1 is required for full virulence and regulates expression of protein effector and secondary metabolite biosynthetic genes. Mol Plant Microbe Interact 27:809–823. https://doi.org/10.1094/MPMI-09-13-0281-R
CAS
Article
PubMed
Google Scholar
Burkhardt I, Siemon T, Henrot M et al (2016) Mechanistic characterisation of two sesquiterpene cyclases from the plant pathogenic fungus Fusarium fujikuroi. Angew Chem Int Ed 55:8748–8751. https://doi.org/10.1002/anie.201603782
CAS
Article
Google Scholar
Butchko RAE, Brown DW, Busman M et al (2012) Lae1 regulates expression of multiple secondary metabolite gene clusters in Fusarium verticillioides. Fungal Genet Biol 49:602–612. https://doi.org/10.1016/j.fgb.2012.06.003
CAS
Article
PubMed
Google Scholar
Catlett NL, Lee B-N, Yoder OC, Turgeon BG (2003) Split-marker recombination for efficient targeted deletion of fungal genes. Fungal Genet Rep 50:9–11. https://doi.org/10.4148/1941-4765.1150
Article
Google Scholar
Challis GL, Ravel J, Townsend CA (2000) Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol 7:211–224
CAS
Article
PubMed
Google Scholar
Chiang Y-M, Oakley CE, Ahuja M et al (2013) An efficient system for heterologous expression of secondary metabolite genes in Aspergillus nidulans. J Am Chem Soc 135:7720–7731. https://doi.org/10.1021/ja401945a
CAS
Article
PubMed
PubMed Central
Google Scholar
Chung KR, Lee MH (2015) Split-marker-mediated transformation and targeted gene disruption in filamentous fungi. In: van den Berg M, Maruthachalam K (eds) Genetic transformation systems in fungi, vol 2. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-10503-1_15
Google Scholar
Citovsky V, Kozlovsky SV, Lacroix B et al (2007) Biological systems of the host cell involved in Agrobacterium infection. Cell Microbiol 9:9–20. https://doi.org/10.1111/j.1462-5822.2006.00830.x
CAS
Article
PubMed
Google Scholar
Connolly LR, Smith KM, Freitag M, Madhani HD (2013) The Fusarium graminearum histone H3 K27 methyltransferase KMT6 regulates development and expression of secondary metabolite gene clusters. PLoS Genet 9 10). https://doi.org/10.1371/journal.pgen.1003916
Article
PubMed
PubMed Central
Google Scholar
Connolly LR, Erlendson AA, Fargo CM et al (2018) Application of the Cre/lox system to construct auxotrophic markers for quantitative genetic analyses in Fusarium graminearum. Methods Mol Biol 1848:235–263. https://doi.org/10.1007/978-1-4939-8724-5_16
CAS
Article
PubMed
Google Scholar
Conti E, Stachelhaus T, Marahiel MA, Brick P (1997) Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J 16:4174–4183
CAS
Article
PubMed
PubMed Central
Google Scholar
Covert SF, Kapoor P, Lee M et al (2001) Agrobacterium tumefaciens-mediated transformation of Fusarium circinatum. Mycol Res 105:259–264. https://doi.org/10.1017/S0953756201003872
CAS
Article
Google Scholar
Crowhurst RN, Rees-George J, Rikkerink EH, Templeton MD (1992) High efficiency transformation of Fusarium solani f. sp. cucurbitae race 2 (mating population V). Curr Genet 21:463–469
CAS
Article
PubMed
Google Scholar
Cuomo CA, Güldener U, Xu J-R et al (2007) The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317:1400–1402. https://doi.org/10.1126/science.1143708
CAS
Article
PubMed
Google Scholar
de Groot MJA, Bundock P, Hooykaas PJ, Beijersbergen AGM (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16:839–842. https://doi.org/10.1038/nbt0998-839
Article
PubMed
Google Scholar
Dean R, Van Kan JAL, Pretorius ZA et al (2012) The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430. https://doi.org/10.1111/j.1364-3703.2011.00783.x
Article
PubMed
PubMed Central
Google Scholar
Desjardins AE, Proctor RH (2007) Molecular biology of Fusarium mycotoxins. Int J Food Microbiol 119:47–50. https://doi.org/10.1016/j.ijfoodmicro.2007.07.024
CAS
Article
PubMed
Google Scholar
Ding M, Li J, Fan X et al (2018) Aquaporin1 regulates development, secondary metabolism and stress responses in Fusarium graminearum. Curr Genet 64:1057–1069. https://doi.org/10.1007/s00294-018-0818-8
CAS
Article
PubMed
Google Scholar
Epstein SC, Charkoudian LK, Medema MH (2018) A standardized workflow for submitting data to the Minimum Information about a Biosynthetic Gene cluster (MIBiG) repository: prospects for research-based educational experiences. Stand Genomic Sci 13:1–13. https://doi.org/10.1186/s40793-018-0318-y
CAS
Article
Google Scholar
Fernández-Martín R, Cerdá-Olmedo E, Avalos J (2000) Homologous recombination and allele replacement in transformants of Fusarium fujikuroi. Mol Gen Genet 263:838–845
Article
PubMed
Google Scholar
Finking R, Marahiel MA (2004) Biosynthesis of nonribosomal peptides. Annu Rev Microbiol 58:453–488. https://doi.org/10.1146/annurev.micro.58.030603.123615
CAS
Article
PubMed
Google Scholar
Frandsen RJN (2011) A guide to binary vectors and strategies for targeted genome modification in fungi using Agrobacterium tumefaciens-mediated transformation. J Microbiol Methods 87:247–262. https://doi.org/10.1016/j.mimet.2011.09.004
CAS
Article
PubMed
Google Scholar
Frandsen RJN, Nielsen NJ, Maolanon N et al (2006) The biosynthetic pathway for aurofusarin in Fusarium graminearum reveals a close link between the naphthoquinones and naphthopyrones. Mol Microbiol 61:1069–1080. https://doi.org/10.1111/j.1365-2958.2006.05295.x
CAS
Article
PubMed
Google Scholar
Frandsen RJN, Andersson JA, Kristensen MB, Giese H (2008) Efficient four fragment cloning for the construction of vectors for targeted gene replacement in filamentous fungi. BMC Mol Biol 9:70. https://doi.org/10.1186/1471-2199-9-70
CAS
Article
PubMed
PubMed Central
Google Scholar
Frandsen RJN, Frandsen M, Giese H (2012) Targeted gene replacement in fungal pathogens via Agrobacterium tumefaciens-mediated transformation. Methods Mol Biol 835:17–45. https://doi.org/10.1007/978-1-61779-501-5_2
CAS
Article
PubMed
Google Scholar
Frandsen RJN, Rasmussen SA, Knudsen PB et al (2016) Black perithecial pigmentation in Fusarium species is due to the accumulation of 5-deoxybostrycoidin-based melanin. Sci Rep 6:26206. https://doi.org/10.1038/srep26206
CAS
Article
PubMed
PubMed Central
Google Scholar
Gaffoor I, Trail F (2006) Characterization of two polyketide synthase genes involved in zearalenone biosynthesis in Gibberella zeae. Appl Environ Microbiol 72:1793–1799. https://doi.org/10.1128/AEM.72.3.1793-1799.2006
CAS
Article
PubMed
PubMed Central
Google Scholar
Gaffoor I, Brown DW, Plattner R, Proctor RH (2005) Functional analysis of the polyketide synthase genes in the filamentous fungus. Eukaryot Cell 4:1926–1933. https://doi.org/10.1128/ec.4.11.1926
CAS
Article
PubMed
PubMed Central
Google Scholar
Gardiner DM, McDonald MC, Covarelli L et al (2012) Comparative pathogenomics reveals horizontally acquired novel virulence genes in fungi infecting cereal hosts. PLoS Pathog 8:e1002952. https://doi.org/10.1371/journal.ppat.1002952
CAS
Article
PubMed
PubMed Central
Google Scholar
Gardiner DM, Stiller J, Kazan K (2014) Genome sequence of Fusarium graminearum isolate CS3005. Genome Announc 2:e00227–14. https://doi.org/10.1128/genomeA.00227-14
Article
PubMed
PubMed Central
Google Scholar
Giese H, Sondergaard TE, Sørensen JL (2013) The AreA transcription factor in Fusarium graminearum regulates the use of some nonpreferred nitrogen sources and secondary metabolite production. Fungal Biol 117:814–821. https://doi.org/10.1016/j.funbio.2013.10.006
CAS
Article
PubMed
Google Scholar
Gomez-Gil L, Camara Almiron J, Rodriguez Carrillo PL et al (2018) Nitrate assimilation pathway (NAP): role of structural (nit) and transporter (ntr1) genes in Fusarium oxysporum f. sp. lycopersici growth and pathogenicity. Curr Genet 64:493–507. https://doi.org/10.1007/s00294-017-0766-8
CAS
Article
PubMed
Google Scholar
Gordon TR, Martyn RD (1997) The evolutionary biology of Fusarium oxysporum. Annu Rev Phytopathol 35:111–128. https://doi.org/10.1146/annurev.phyto.35.1.111
CAS
Article
PubMed
Google Scholar
Graziani S, Vasnier C, Daboussi MJ (2004) Novel polyketide synthase from Nectria haematococca. Appl Environ Microbiol 70:2984–2988. https://doi.org/10.1128/AEM.70.5.2984-2988.2004
CAS
Article
PubMed
PubMed Central
Google Scholar
Haese A, Schubert M, Herrmann M, Zocher R (1993) Molecular characterization of the enniatin synthetase gene encoding a multifunctional enzyme catalysing N-methyldepsipeptide formation in Fusarium scirpi. Mol Microbiol 7:905–914. https://doi.org/10.1111/j.1365-2958.1993.tb01181.x
CAS
Article
PubMed
Google Scholar
Han Y-K, Lee T, Han K-H et al (2004) Functional analysis of the homoserine O-acetyltransferase gene and its identification as a selectable marker in Gibberella zeae. Curr Genet 46:205–212. https://doi.org/10.1007/s00294-004-0528-2
CAS
Article
PubMed
Google Scholar
Hansen FT, Droce A, Sørensen JL et al (2012a) Overexpression of NRPS4 leads to increased surface hydrophobicity in Fusarium graminearum. Fungal Biol 116:855–862. https://doi.org/10.1016/j.funbio.2012.04.014
CAS
Article
PubMed
Google Scholar
Hansen FT, Sørensen JL, Giese H et al (2012b) Quick guide to polyketide synthase and nonribosomal synthetase genes in Fusarium. Int J Food Microbiol 155:128–136. https://doi.org/10.1016/j.ijfoodmicro.2012.01.018
CAS
Article
PubMed
Google Scholar
Hansen FT, Gardiner DM, Lysøe E et al (2015) An update to polyketide synthase and non-ribosomal synthetase genes and nomenclature in Fusarium. Fungal Genet Biol 75:20–29. https://doi.org/10.1016/j.fgb.2014.12.004
CAS
Article
PubMed
Google Scholar
Hemphill CFP, Sureechatchaiyan P, Kassack MU et al (2017) OSMAC approach leads to new fusarielin metabolites from Fusarium tricinctum. J Antibiot (Tokyo) 70:726–732. https://doi.org/10.1038/ja.2017.21
CAS
Article
Google Scholar
Holm DK, Petersen LM, Klitgaard A et al (2014) Molecular and chemical characterization of the biosynthesis of the 6-MSA-derived meroterpenoid yanuthone D in Aspergillus niger. Chem Biol 21:519–529. https://doi.org/10.1016/j.chembiol.2014.01.013
CAS
Article
PubMed
Google Scholar
Hoogendoorn K, Barra L, Waalwijk C et al (2018) Evolution and diversity of biosynthetic gene clusters in Fusarium. Front Microbiol 9:1–12. https://doi.org/10.3389/fmicb.2018.01158
Article
Google Scholar
Idnurm A, Bailey AM, Cairns TC et al (2017) A silver bullet in a golden age of functional genomics: the impact of Agrobacterium-mediated transformation of fungi. Fungal Biol Biotechnol 4:6. https://doi.org/10.1186/s40694-017-0035-0
Article
PubMed
PubMed Central
Google Scholar
Inoue L, Ohara T, Nakami F, Tsuge T (2001) Isolation of pathogenicity mutants of Fusarium oxysporum f. sp. melonis by insertional mutagenesis. J Gen Plant Pathol 67:191–199. https://doi.org/10.1007/PL00013010
CAS
Article
Google Scholar
Janevska S, Tudzynski B (2018) Secondary metabolism in Fusarium fujikuroi: strategies to unravel the function of biosynthetic pathways. Appl Microbiol Biotechnol 102:615–630. https://doi.org/10.1007/s00253-017-8679-5
CAS
Article
PubMed
Google Scholar
Janevska S, Arndt B, Niehaus E-M et al (2016) Gibepyrone biosynthesis in the rice pathogen Fusarium fujikuroi is facilitated by a small polyketide synthase gene cluster. J Biol Chem 291:27403–27420. https://doi.org/10.1074/jbc.M116.753053
CAS
Article
PubMed
PubMed Central
Google Scholar
Janevska S, Arndt B, Baumann L et al (2017) Establishment of the inducible Tet-on system for the activation of the silent trichosetin gene cluster in Fusarium fujikuroi. Toxins (Basel) 9:E126. https://doi.org/10.3390/toxins9040126
CAS
Article
Google Scholar
Jia L-J, Tang H-Y, Wang W-Q et al (2019) A linear nonribosomal octapeptide from Fusarium graminearum facilitates cell-to-cell invasion of wheat. Nat Commun 10:922. https://doi.org/10.1038/s41467-019-08726-9
CAS
Article
PubMed
PubMed Central
Google Scholar
Jin J-M, Lee S, Lee J et al (2010) Functional characterization and manipulation of the apicidin biosynthetic pathway in Fusarium semitectum. Mol Microbiol 76:456–466. https://doi.org/10.1111/j.1365-2958.2010.07109.x
CAS
Article
PubMed
Google Scholar
Jørgensen SH, Frandsen RJN, Nielsen KF et al (2014) Fusarium graminearum PKS14 is involved in orsellinic acid and orcinol synthesis. Fungal Genet Biol 70:24–31. https://doi.org/10.1016/j.fgb.2014.06.008
CAS
Article
PubMed
Google Scholar
Josefsen L, Droce A, Sondergaard TE et al (2012) Autophagy provides nutrients for nonassimilating fungal structures and is necessary for plant colonization but not for infection in the necrotrophic plant pathogen Fusarium graminearum. Autophagy 8:326–337. https://doi.org/10.4161/auto.8.3.18705
CAS
Article
PubMed
Google Scholar
Kakule TB, Sardar D, Lin Z, Schmidt EW (2013) Two related pyrrolidinedione synthetase loci in Fusarium heterosporum ATCC 74349 produce divergent metabolites. ACS Chem Biol 8:1549–1557. https://doi.org/10.1021/cb400159f
CAS
Article
PubMed
Google Scholar
Kakule TB, Jadulco RC, Koch M et al (2015) Native promoter strategy for high-yielding synthesis and engineering of fungal secondary metabolites. ACS Synth Biol 4:625–633. https://doi.org/10.1021/sb500296p
CAS
Article
PubMed
Google Scholar
Keller NP (2019) Fungal secondary metabolism: regulation, function and drug discovery. Nat Rev Microbiol 17:167–180. https://doi.org/10.1038/s41579-018-0121-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Keller NP, Hohn TM, Keller Hohn (1997) Metabolic pathway gene clusters in filamentous fungi. Fungal Genet Biol 21:17–29. https://doi.org/10.1006/fgbi.1997.0970
CAS
Article
PubMed
Google Scholar
Khaldi N, Seifuddin FT, Turner G et al (2010) SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol 47:736–741. https://doi.org/10.1016/j.fgb.2010.06.003
CAS
Article
PubMed
PubMed Central
Google Scholar
Khayatt BI, Overmars L, Siezen RJ, Francke C (2013) Classification of the adenylation and acyl-transferase activity of NRPS and PKS systems using ensembles of substrate specific hidden Markov models. PLoS One 8:e62136. https://doi.org/10.1371/journal.pone.0062136
CAS
Article
PubMed
PubMed Central
Google Scholar
Kim JE, Han KH, Jin J et al (2005a) Putative polyketide synthase and laccase genes for biosynthesis of aurofusarin in Gibberella zeae. Appl Environ Microbiol 71:1701–1708. https://doi.org/10.1128/AEM.71.4.1701-1708.2005
CAS
Article
PubMed
PubMed Central
Google Scholar
Kim YT, Lee YR, Jin J et al (2005b) Two different polyketide synthase genes are required for synthesis of zearalenone in Gibberella zeae. Mol Microbiol 58:1102–1113. https://doi.org/10.1111/j.1365-2958.2005.04884.x
CAS
Article
PubMed
Google Scholar
Kim J-E, Jin J, Kim H et al (2006) GIP2, a putative transcription factor that regulates the aurofusarin biosynthetic gene cluster in Gibberella zeae. Appl Environ Microbiol 72:1645–1652. https://doi.org/10.1128/AEM.72.2.1645-1652.2006
CAS
Article
PubMed
PubMed Central
Google Scholar
King R, Urban M, Hammond-Kosack MCU et al (2015) The completed genome sequence of the pathogenic ascomycete fungus Fusarium graminearum. BMC Genomics 16:544. https://doi.org/10.1186/s12864-015-1756-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Kistler HC, Benny UK (1988) Genetic transformation of the fungal plant wilt pathogen, Fusarium oxysporum. Curr Genet 13:145–149. https://doi.org/10.1007/BF00365649
CAS
Article
Google Scholar
Klitgaard A, Iversen A, Andersen MR et al (2014) Aggressive dereplication using UHPLC–DAD–QTOF: screening extracts for up to 3000 fungal secondary metabolites. Anal Bioanal Chem 406:1933–1943. https://doi.org/10.1007/s00216-013-7582-x
CAS
Article
PubMed
PubMed Central
Google Scholar
Klitgaard A, Frandsen RJN, Holm DK et al (2015) Combining UHPLC-high resolution MS and feeding of stable isotope labeled polyketide intermediates for linking precursors to end products. J Nat Prod 78:1518–1525. https://doi.org/10.1021/np500979d
CAS
Article
PubMed
Google Scholar
Knudsen M, Søndergaard D, Tofting-Olesen C et al (2016) Computational discovery of specificity-conferring sites in non-ribosomal peptide synthetases. Bioinformatics 32:325–329. https://doi.org/10.1093/bioinformatics/btv600
CAS
Article
PubMed
Google Scholar
Kroken S, Glass NL, Taylor JW et al (2003) Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci 100:15670–15675. https://doi.org/10.1073/pnas.2532165100
CAS
Article
PubMed
PubMed Central
Google Scholar
Leslie JF, Summerell BA (eds) (2006) The Fusarium Laboratory Manual. Blackwell Publishing, Ames
Google Scholar
Li G, Kusari S, Golz C et al (2016) Three cyclic pentapeptides and a cyclic lipopeptide produced by endophytic: Fusarium decemcellulare LG53. RSC Adv 6:54092–54098. https://doi.org/10.1039/c6ra10905e
CAS
Article
Google Scholar
Liang L, Li J, Cheng L et al (2014) A high efficiency gene disruption strategy using a positive–negative split selection marker and electroporation for Fusarium oxysporum. Microbiol Res 169:835–843. https://doi.org/10.1016/j.micres.2014.03.004
CAS
Article
PubMed
Google Scholar
Linnemannstöns P, Voss T, Hedden P et al (1999) Deletions in the gibberellin biosynthesis gene cluster of Gibberella fujikuroi by restriction enzyme-mediated integration and conventional transformation-mediated mutagenesis. Appl Environ Microbiol 65:2558–2564
PubMed
PubMed Central
Google Scholar
Linnemannstöns P, Schulte J, Del Mar Prado M et al (2002) The polyketide synthase gene pks4 from Gibberella fujikuroi encodes a key enzyme in the biosynthesis of the red pigment bikaverin. Fungal Genet Biol 37:134–148. https://doi.org/10.1016/S1087-1845(02)00501-7
CAS
Article
PubMed
Google Scholar
Liuzzi V, Mirabelli V, Cimmarusti M et al (2017) Enniatin and beauvericin biosynthesis in Fusarium species: production profiles and structural determinant prediction. Toxins (Basel) 9:45. https://doi.org/10.3390/toxins9020045
CAS
Article
Google Scholar
Lysøe E, Klemsdal SS, Bone KR et al (2006) The PKS4 gene of Fusarium graminearum is essential for zearalenone production. Appl Environ Microbiol 72:3924–3932. https://doi.org/10.1128/AEM.00963-05
CAS
Article
PubMed
PubMed Central
Google Scholar
Lysøe E, Harris LJ, Walkowiak S et al (2014) The genome of the generalist plant pathogen Fusarium avenaceum is enriched with genes involved in redox, signaling and secondary metabolism. PLoS One. https://doi.org/10.1371/journal.pone.0112703
Article
PubMed
PubMed Central
Google Scholar
Ma LJ, Van Der Does HC, Borkovich KA et al (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373. https://doi.org/10.1038/nature08850
CAS
Article
PubMed
PubMed Central
Google Scholar
Ma L-J, Shea T, Young S et al (2014) Genome sequence of Fusarium oxysporum f. sp. melonis strain NRRL 26406, a fungus causing wilt disease on melon. Genome Announc 2:2013–2014. https://doi.org/10.1128/genomeA.00730-14
Article
Google Scholar
Malz S, Grell MN, Thrane C et al (2005) Identification of a gene cluster responsible for the biosynthesis of aurofusarin in the Fusarium graminearum species complex. Fungal Genet Biol 42:420–433. https://doi.org/10.1016/j.fgb.2005.01.010
CAS
Article
PubMed
Google Scholar
Marasas WFO, van Rensburg SJ, Mirocha CJ (1979) Incidence of Fusarium species and the mycotoxins, deoxynivalenol and zearalenone, in corn produced in esophageal cancer areas in Transkei. J Agric Food Chem 27:1108–1112. https://doi.org/10.1021/jf60225a013
CAS
Article
PubMed
Google Scholar
Marek ET, Schardl CL, Smith DA (1989) Molecular transformation of Fusarium solani with an antibiotic resistance marker having no fungal DNA homology. Curr Genet 15:421–428
CAS
Article
PubMed
Google Scholar
McDaniel R, Ebert-Khosla S, Fu H et al (1994) Engineered biosynthesis of novel polyketides: influence of a downstream enzyme on the catalytic specificity of a minimal aromatic polyketide synthase. Proc Natl Acad Sci USA 91:11542–11546
CAS
Article
PubMed
PubMed Central
Google Scholar
Mcmullen M, Jones R, Gallenberg D (1997) Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Dis 81:1340–1348
Article
PubMed
Google Scholar
Meier JL, Burkart MD (2009) The chemical biology of modular biosynthetic enzymes. Chem Soc Rev 38:2012. https://doi.org/10.1039/b805115c
CAS
Article
PubMed
Google Scholar
Meyer V (2008) Genetic engineering of filamentous fungi—progress, obstacles and future trends. Biotechnol Adv 26:177–185. https://doi.org/10.1016/j.biotechadv.2007.12.001
CAS
Article
PubMed
Google Scholar
Michielse CB, Rep M (2009) Pathogen profile update: Fusarium oxysporum. Mol Plant Pathol 10:311–324. https://doi.org/10.1111/j.1364-3703.2009.00538.x
CAS
Article
PubMed
PubMed Central
Google Scholar
Michielse CB, Hooykaas PJJ, van den Hondel CAMJJ, Ram AFJ (2005) Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet 48:1–17. https://doi.org/10.1007/s00294-005-0578-0
CAS
Article
PubMed
Google Scholar
Michielse CB, Pfannmüller A, Macios M et al (2014) The interplay between the GATA transcription factors AreA, the global nitrogen regulator and AreB in Fusarium fujikuroi. Mol Microbiol 91:472–493. https://doi.org/10.1111/mmi.12472
CAS
Article
PubMed
Google Scholar
Michielse CB, Studt L, Janevska S et al (2015) The global regulator FfSge1 is required for expression of secondary metabolite gene clusters but not for pathogenicity in Fusarium fujikuroi. Environ Microbiol 17:2690–2708. https://doi.org/10.1111/1462-2920.12592
CAS
Article
PubMed
Google Scholar
Moolhuijzen PM, Manners JM, Wilcox SA et al (2013) Genome sequences of six wheat-infecting Fusarium species isolates. Genome Announc 1:1. https://doi.org/10.1128/genomea.00670-13
Article
Google Scholar
Müller MEH, Steier I, Köppen R et al (2012) Cocultivation of phytopathogenic Fusarium and Alternaria strains affects fungal growth and mycotoxin production. J Appl Microbiol 113:874–887. https://doi.org/10.1111/j.1365-2672.2012.05388.x
CAS
Article
PubMed
Google Scholar
Mullins ED, Chen X, Romaine P et al (2001) Agrobacterium-mediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer. Phytopathology 91:173–180. https://doi.org/10.1094/PHYTO.2001.91.2.173
CAS
Article
PubMed
Google Scholar
Munawar A, Marshall JW, Cox RJ et al (2013) Isolation and characterisation of a ferrirhodin synthetase gene from the sugarcane pathogen Fusarium sacchari. ChemBioChem 14:388–394. https://doi.org/10.1002/cbic.201200587
CAS
Article
PubMed
Google Scholar
Naseema A, Dhanya B, Anjanadevi IP et al (2008) Isolation and regeneration of protoplasts from the mycelium of Fusarium pallidoroseum—a potential biocontrol agent of water hyacinth [Eichhornia crassipes (Mart.) Solms]. J Trop Agric 46:55–57
Google Scholar
Netzker T, Fischer J, Weber J et al (2015) Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Front Microbiol 6:1–13. https://doi.org/10.3389/fmicb.2015.00299
Article
Google Scholar
Niehaus E-M, Janevska S, Von Bargen KW et al (2014a) Apicidin F: characterization and genetic manipulation of a new secondary metabolite gene cluster in the rice pathogen Fusarium fujikuroi. PLoS One 9:1. https://doi.org/10.1371/journal.pone.0103336
CAS
Article
Google Scholar
Niehaus E-M, Von Bargen KW, Espino JJ et al (2014b) Characterization of the fusaric acid gene cluster in Fusarium fujikuroi. Appl Microbiol Biotechnol 98:1749–1762. https://doi.org/10.1007/s00253-013-5453-1
CAS
Article
PubMed
Google Scholar
Niehaus E-M, Kim HK, Münsterkötter M et al (2017) Comparative genomics of geographically distant Fusarium fujikuroi isolates revealed two distinct pathotypes correlating with secondary metabolite profiles. PLoS Pathog 13:e1006670
Article
PubMed
PubMed Central
Google Scholar
Nielsen NJ, Tomasi G, Frandsen RJN et al (2010) A pre-processing strategy for liquid chromatography time-of-flight mass spectrometry metabolic fingerprinting data. Metabolomics 6:341–352. https://doi.org/10.1007/s11306-010-0211-1
CAS
Article
Google Scholar
Nielsen KF, Månsson M, Rank C et al (2011) Dereplication of microbial natural products by LC-DAD-TOFMS. J Nat Prod 74:2338–2348. https://doi.org/10.1021/np200254t
CAS
Article
PubMed
Google Scholar
Nihei K, Itoh H, Hashimato K et al (1998) Antifungal cyclodepsipeptides, W493 A and B, from Fusarium sp.: isolation and structural determination. Biosci Biotechnol Biochem 62:858–863. https://doi.org/10.1271/bbb.62.858
CAS
Article
PubMed
Google Scholar
Nucci M, Anaissie E (2007) Fusarium infections in immunocompromised patients. Clin Microbiol Rev 20:695–704. https://doi.org/10.1128/CMR.00014-07
CAS
Article
PubMed
PubMed Central
Google Scholar
Oide S, Moeder W, Krasnoff S et al (2006) NPS6, encoding a nonribosomal peptide synthetase involved in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic ascomycetes. Plant Cell Online 18:2836–2853. https://doi.org/10.1105/tpc.106.045633
CAS
Article
Google Scholar
Oide S, Krasnoff SB, Gibson DM, Turgeon BG (2007) Intracellular siderophores are essential for ascomycete sexual development in heterothallic Cochliobolus heterostrophus and homothallic Gibberella zeae. Eukaryot Cell 6:1339–1353. https://doi.org/10.1128/EC.00111-07
CAS
Article
PubMed
PubMed Central
Google Scholar
Oide S, Berthiller F, Wiesenberger G et al (2014) Individual and combined roles of malonichrome, ferricrocin, and TAFC siderophores in Fusarium graminearum pathogenic and sexual development. Front Microbiol 5:1–15. https://doi.org/10.3389/fmicb.2014.00759
Article
Google Scholar
Ola ARB, Thomy D, Lai D et al (2013) Inducing secondary metabolite production by the endophytic fungus Fusarium tricinctum through coculture with Bacillus subtilis. J Nat Prod 76:2094–2099. https://doi.org/10.1021/np400589h
CAS
Article
PubMed
Google Scholar
Olmedo-Monfil V, Cortés-Penagos C, Herrera-Estrella A (2004) Three decades of fungal transformation: key concepts and applications. Recombinant gene expression. Humana Press, New Jersey, pp 297–314
Chapter
Google Scholar
Palmer JM, Keller NP (2010) Secondary metabolism in fungi: does chromosomal location matter? Curr Opin Microbiol 13:431–436. https://doi.org/10.1016/j.mib.2010.04.008
CAS
Article
PubMed
PubMed Central
Google Scholar
Ponts N, Richard-Forget F, Zhang H et al (2018) Genome sequence of the emerging mycotoxin-producing filamentous fungus Fusarium tricinctum strain INRA104. Genome Announc. https://doi.org/10.1128/genomea.00509-18
Article
PubMed
PubMed Central
Google Scholar
Proctor RH, Desjardins AE, Plattner RD, Hohn TM (1999) A polyketide synthase gene required for biosynthesis of fumonisin mycotoxins in Gibberella fujikuroi mating population A. Fungal Genet Biol 27:100–112. https://doi.org/10.1006/fgbi.1999.1141
CAS
Article
PubMed
Google Scholar
Proctor RH, Busman M, Seo JA et al (2008) A fumonisin biosynthetic gene cluster in Fusarium oxysporum strain O-1890 and the genetic basis for B versus C fumonisin production. Fungal Genet Biol 45:1016–1026. https://doi.org/10.1016/j.fgb.2008.02.004
CAS
Article
PubMed
Google Scholar
Rausch C (2005) Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res 33:5799–5808. https://doi.org/10.1093/nar/gki885
CAS
Article
PubMed
PubMed Central
Google Scholar
Rodriguez-Iglesias A, Schmoll M (2015) Protoplast transformation for genome manipulation in fungi. Fungal Biol 1:21–40. https://doi.org/10.1007/978-3-319-10142-2_2
Article
Google Scholar
Romans-Fuertes P, Sondergaard TE, Sandmann MIH et al (2016) Identification of the non-ribosomal peptide synthetase responsible for biosynthesis of the potential anti-cancer drug sansalvamide in Fusarium solani. Curr Genet 62:799–807. https://doi.org/10.1007/s00294-016-0584-4
CAS
Article
PubMed
Google Scholar
Röttig M, Medema MH, Blin K et al (2011) NRPSpredictor2—a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res 39:W362–W367. https://doi.org/10.1093/nar/gkr323
CAS
Article
PubMed
PubMed Central
Google Scholar
Rugbjerg P, Naesby M, Mortensen UH, Frandsen RJ (2013) Reconstruction of the biosynthetic pathway for the core fungal polyketide scaffold rubrofusarin in Saccharomyces cerevisiae. Microb Cell Fact 12:31. https://doi.org/10.1186/1475-2859-12-31
CAS
Article
PubMed
PubMed Central
Google Scholar
Salch YP, Beremand MN (1993) Gibberella pulicaris transformants: state of transforming DNA during asexual and sexual growth. Curr Genet 23:343–350. https://doi.org/10.1007/BF00310897
CAS
Article
PubMed
Google Scholar
Selegato DM, Freire RT, Tannús A, Castro-Gamboa I (2016) New dereplication method applied to NMR-based metabolomics on different Fusarium species isolated from rhizosphere of Senna spectabilis. J Braz Chem Soc. https://doi.org/10.5935/0103-5053.20160139
Article
Google Scholar
Shim W-B, Woloshuk CP (2001) Regulation of fumonisin B1 biosynthesis and conidiation in Fusarium verticillioides by a cyclin-like (C-type) gene, FCC1. Appl Environ Microbiol 67:1607–1612. https://doi.org/10.1128/AEM.67.4.1607-1612.2001
CAS
Article
PubMed
PubMed Central
Google Scholar
Shiono Y, Tsuchinari M, Shimanuki K et al (2007) Fusaristatins A and B, two new cyclic lipopeptides from an endophytic Fusarium sp. J Antibiot (Tokyo) 60:309–316. https://doi.org/10.1038/ja.2007.39
CAS
Article
Google Scholar
Short DPG, O’Donnell K, Thrane U et al (2013) Phylogenetic relationships among members of the Fusarium solani species complex in human infections and the descriptions of F. keratoplasticum sp. nov. and F. petroliphilum stat. nov. Fungal Genet Biol 53:59–70. https://doi.org/10.1016/j.fgb.2013.01.004
Article
PubMed
Google Scholar
Sieber CMK, Lee W, Wong P et al (2014) The Fusarium graminearum genome reveals more secondary metabolite gene clusters and hints of horizontal gene transfer. PLoS One. https://doi.org/10.1371/journal.pone.0110311
Article
PubMed
PubMed Central
Google Scholar
Singh N, Rajam MV (2013) A simple and rapid glass bead transformation method for a filamentous fungus Fusarium oxysporum. Cell Dev Biol 2(2). https://doi.org/10.4172/2168-9296.1000115
Soliday CL, Dickman MB, Kolattukudy PE (1989) Structure of the cutinase gene and detection of promoter activity in the 5′-flanking region by fungal transformation. J Bacteriol 171:1942–1951
CAS
Article
PubMed
PubMed Central
Google Scholar
Song Z, Cox RJ, Lazarus CM, Simpson TJ (2004) Fusarin C biosynthesis in Fusarium moniliforme and Fusarium venenatum. ChemBioChem 5:1196–1203. https://doi.org/10.1002/cbic.200400138
CAS
Article
PubMed
Google Scholar
Sørensen JL, Sondergaard TE (2014) The effects of different yeast extracts on secondary metabolite production in Fusarium. Int J Food Microbiol 170:55–60. https://doi.org/10.1016/j.ijfoodmicro.2013.10.024
CAS
Article
PubMed
Google Scholar
Sørensen JL, Hansen FT, Sondergaard TE et al (2012a) Production of novel fusarielins by ectopic activation of the polyketide synthase 9 cluster in Fusarium graminearum. Environ Microbiol 14:1159–1170. https://doi.org/10.1111/j.1462-2920.2011.02696.x
CAS
Article
PubMed
Google Scholar
Sørensen JL, Nielsen KF, Sondergaard TE (2012b) Redirection of pigment biosynthesis to isocoumarins in Fusarium. Fungal Genet Biol 49:613–618. https://doi.org/10.1016/j.fgb.2012.06.004
CAS
Article
PubMed
Google Scholar
Sørensen JL, Sondergaard TE, Covarelli L et al (2014a) Identification of the biosynthetic gene clusters for the lipopeptides fusaristatin A and W493 B in Fusarium graminearum and F. pseudograminearum. J Nat Prod 77:2619–2625. https://doi.org/10.1021/np500436r
CAS
Article
PubMed
Google Scholar
Sørensen LQ, Larsen JE, Khorsand-Jamal P et al (2014b) Genetic transformation of Fusarium avenaceum by Agrobacterium tumefaciens mediated transformation and the development of a USER-Brick vector construction system. BMC Mol Biol 15:15. https://doi.org/10.1186/1471-2199-15-15
CAS
Article
PubMed
PubMed Central
Google Scholar
Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6:493–505. https://doi.org/10.1016/S1074-5521(99)80082-9
CAS
Article
PubMed
Google Scholar
Strieker M, Tanović A, Marahiel MA (2010) Nonribosomal peptide synthetases: structures and dynamics. Curr Opin Struct Biol 20:234–240. https://doi.org/10.1016/j.sbi.2010.01.009
CAS
Article
PubMed
Google Scholar
Studt L, Wiemann P, Kleigrewe K et al (2012) Biosynthesis of fusarubins accounts for pigmentation of Fusarium Fujikuroi perithecia. Appl Environ Microbiol 78:4468–4480. https://doi.org/10.1128/AEM.00823-12
CAS
Article
PubMed
PubMed Central
Google Scholar
Studt L, Janevska S, Niehaus E-M et al (2016a) Two separate key enzymes and two pathway-specific transcription factors are involved in fusaric acid biosynthesis in Fusarium fujikuroi. Environ Microbiol 18:936–956. https://doi.org/10.1111/1462-2920.13150
CAS
Article
PubMed
Google Scholar
Studt L, Rösler SM, Burkhardt I et al (2016b) Knock-down of the methyltransferase Kmt6 relieves H3K27me3 and results in induction of cryptic and otherwise silent secondary metabolite gene clusters in Fusarium fujikuroi. Environ Microbiol 18:4037–4054. https://doi.org/10.1111/1462-2920.13427
CAS
Article
PubMed
PubMed Central
Google Scholar
Studt L, Janevska S, Arndt B et al (2017) Lack of the COMPASS component Ccl1 reduces H3K4 trimethylation levels and affects transcription of secondary metabolite genes in two plant-pathogenic Fusarium species. Front Microbiol 7:1–17. https://doi.org/10.3389/fmicb.2016.02144
Article
Google Scholar
Summerell BA, Laurence MH, Liew ECY, Leslie JF (2010) Biogeography and phylogeography of Fusarium: a review. Fungal Divers 44:3–13. https://doi.org/10.1007/s13225-010-0060-2
Article
Google Scholar
Takken FLW, van Wijk R, Michielse CB et al (2004) A one-step method to convert vectors into binary vectors suited for Agrobacterium-mediated transformation. Curr Genet 45:242–248. https://doi.org/10.1007/s00294-003-0481-5
CAS
Article
PubMed
Google Scholar
Tobiasen C, Aahman J, Ravnholt KS et al (2007) Nonribosomal peptide synthetase (NPS) genes in Fusarium graminearum, F. culmorum and F. pseudograminearum and identification of NPS2 as the producer of ferricrocin. Curr Genet 51:43–58. https://doi.org/10.1007/s00294-006-0103-0
CAS
Article
PubMed
Google Scholar
Troncoso C, González X, Bömke C et al (2010) Gibberellin biosynthesis and gibberellin oxidase activities in Fusarium sacchari, Fusarium konzum and Fusarium subglutinans strains. Phytochemistry 71:1322–1331. https://doi.org/10.1016/j.phytochem.2010.05.006
CAS
Article
PubMed
Google Scholar
Tudzynski B, Mende K, Weltring K-M et al (1996) The Gibberella fujikuroi niaD gene encoding nitrate reductase: isolation, sequence, homologous transformation and electrophoretic karyotype location. Microbiology 142:533–539. https://doi.org/10.1099/13500872-142-3-533
CAS
Article
PubMed
Google Scholar
Twaruschek K, Spörhase P, Michlmayr H et al (2018) New plasmids for Fusarium transformation allowing positive-negative selection and efficient Cre-loxP mediated marker recycling. Front Microbiol 9:1–14. https://doi.org/10.3389/fmicb.2018.01954
Article
Google Scholar
Utermark J, Karlovsky P (2008) Genetic transformation of filamentous fungi by Agrobacterium tumefaciens. Protoc Exch. https://doi.org/10.1038/nprot.2008.83
Article
Google Scholar
van Helden J, del Olmo M, Pérez-Ortín JE (2000) Statistical analysis of yeast genomic downstream sequences reveals putative polyadenylation signals. Nucleic Acids Res 28:1000–1010
Article
PubMed
PubMed Central
Google Scholar
Vanheule A, Audenaert K, Warris S et al (2016) Living apart together: crosstalk between the core and supernumerary genomes in a fungal plant pathogen. BMC Genomics 17:1–18. https://doi.org/10.1186/s12864-016-2941-6
CAS
Article
Google Scholar
Varga J, Kocsubé S, Tóth B, Mesterházy Á (2005) Nonribosomal peptide synthetase genes in the genome of Fusarium graminearum, causative agent of wheat head blight. Acta Biol Hung 56:375–388. https://doi.org/10.1556/ABiol.56.2005.3-4.19
CAS
Article
PubMed
Google Scholar
Von Bargen KW, Niehaus EM, Krug I et al (2015) Isolation and structure elucidation of fujikurins A–D: products of the PKS19 gene cluster in Fusarium fujikuroi. J Nat Prod 78:1809–1815. https://doi.org/10.1021/np5008137
CAS
Article
Google Scholar
Walkowiak S, Rowland O, Rodrigue N, Subramaniam R (2016) Whole genome sequencing and comparative genomics of closely related Fusarium Head Blight fungi: Fusarium graminearum, F. meridionale and F. asiaticum. BMC Genomics 17:1014. https://doi.org/10.1186/s12864-016-3371-1
CAS
Article
Google Scholar
Watanabe M, Yonezawa T, Lee KI et al (2011) Molecular phylogeny of the higher and lower taxonomy of the Fusarium genus and differences in the evolutionary histories of multiple genes. BMC Evol Biol. https://doi.org/10.1186/1471-2148-11-322
Article
PubMed
PubMed Central
Google Scholar
Westphal KR, Muurmann AT, Paulsen IE et al (2018a) Who needs neighbors? PKS8 is a stand-alone gene in Fusarium graminearum responsible for production of gibepyrones and prolipyrone B. Molecules. https://doi.org/10.3390/molecules23092232
Article
PubMed
PubMed Central
Google Scholar
Westphal KR, Wollenberg R, Herbst F-A et al (2018b) Enhancing the production of the fungal pigment aurofusarin in Fusarium graminearum. Toxins (Basel) 10:485. https://doi.org/10.3390/toxins10110485
CAS
Article
Google Scholar
Westphal KR, Nielsen KAH, Wollenberg RD, Møllehøj MB, Bachleitner S, Studt L, Lysøe E, Giese H, Wimmer R, Sørensen JL, Sondergaard TE (2019) Fusaoctaxin A, an example of a two-step mechanism for non-ribosomal peptide assembly and maturation in fungi. Toxins 11(5):277
Article
PubMed Central
Google Scholar
Wiebe MG, Nováková M, Miller L et al (1997) Protoplast production and transformation of morphological mutants of the Quorn® myco-protein fungus, Fusarium graminearum A3/5, using the hygromycin B resistance plasmid pAN7–1. Mycol Res 101:871–877. https://doi.org/10.1017/S0953756296003425
CAS
Article
Google Scholar
Wiemann P, Keller NP (2014) Strategies for mining fungal natural products. J Ind Microbiol Biotechnol 41:301–313. https://doi.org/10.1007/s10295-013-1366-3
CAS
Article
PubMed
Google Scholar
Wiemann P, Willmann A, Straeten M et al (2009) Biosynthesis of the red pigment bikaverin in Fusarium fujikuroi: genes, their function and regulation. Mol Microbiol 72:931–946. https://doi.org/10.1111/j.1365-2958.2009.06695.x
CAS
Article
PubMed
Google Scholar
Wiemann P, Sieber CMK, von Bargen KW et al (2013) Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathog 9:1. https://doi.org/10.1371/journal.ppat.1003475
CAS
Article
Google Scholar
Windels CE (2000) Economic and social impacts of Fusarium head blight: changing farms and rural communities in the Northern Great Plains. Phytopathology 90:17–21. https://doi.org/10.1094/PHYTO.2000.90.1.17
CAS
Article
PubMed
Google Scholar
Wolf T, Shelest V, Nath N, Shelest E (2016) CASSIS and SMIPS: promoter-based prediction of secondary metabolite gene clusters in eukaryotic genomes. Bioinformatics 32:1138–1143. https://doi.org/10.1093/bioinformatics/btv713
CAS
Article
PubMed
Google Scholar
Wollenberg RD, Saei W, Westphal KR et al (2017) Chrysogine biosynthesis is mediated by a two-module nonribosomal peptide synthetase. J Nat Prod 80:2131–2135. https://doi.org/10.1021/acs.jnatprod.6b00822
CAS
Article
PubMed
Google Scholar
Yang P, Chen Y, Wu H et al (2018) The 5-oxoprolinase is required for conidiation, sexual reproduction, virulence and deoxynivalenol production of Fusarium graminearum. Curr Genet 64:285–301. https://doi.org/10.1007/s00294-017-0747-y
CAS
Article
PubMed
Google Scholar
Yoshida M, Nakajima T (2010) Deoxynivalenol and nivalenol accumulation in wheat infected with Fusarium graminearum during grain development. Phytopathology 100:763–773. https://doi.org/10.1094/PHYTO-100-8-0763
CAS
Article
PubMed
Google Scholar
Yu J-H, Keller N (2005) Regulation of secondary metabolism in filamentous fungi. Annu Rev Phytopathol 43:437–458. https://doi.org/10.1146/annurev.phyto.43.040204.140214
CAS
Article
PubMed
Google Scholar
Zhao C, Waalwijk C, de Wit PJGM et al (2014) Relocation of genes generates non-conserved chromosomal segments in Fusarium graminearum that show distinct and co-regulated gene expression patterns. BMC Genomics 15:191. https://doi.org/10.1186/1471-2164-15-191
Article
PubMed
PubMed Central
Google Scholar