Skip to main content

Unraveling quiescence-specific repressive chromatin domains

Abstract

Quiescence is a highly conserved inactive life stage in which the cell reversibly exits the cell cycle in response to external cues. Quiescence is essential for diverse processes such as the maintenance of adult stem cell stores, stress resistance, and longevity, and its misregulation has been implicated in cancer. Although the non-cycling nature of quiescent cells has made obtaining sufficient quantities of quiescent cells for study difficult, the development of a Saccharomyces cerevisiae model of quiescence has recently enabled detailed investigation into mechanisms underlying the quiescent state. Like their metazoan counterparts, quiescent budding yeast exhibit widespread transcriptional silencing and dramatic chromatin condensation. We have recently found that the structural maintenance of chromosomes (SMC) complex condensin binds throughout the quiescent budding yeast genome and induces the formation of large chromatin loop domains. In the absence of condensin, quiescent cell chromatin is decondensed and transcription is de-repressed. Here, we briefly discuss our findings in the larger context of the genome organization field.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

All data are from Swygert et al. 2019

References

  • Allen C, Buttner S, Aragon AD, Thomas JA, Meirelles O, Jaetao JE, Benn D, Ruby SW, Veenhuis M, Madeo F et al (2006) Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures. J Cell Biol 174:89–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aragon AD, Quinones GA, Thomas EV, Roy S, Werner-Washburne M (2006) Release of extraction-resistant mRNA in stationary phase Saccharomyces cerevisiae produces a massive increase in transcript abundance in response to stress. Genome Biol 7:R9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulger M, Groudine M (2011) Functional and mechanistic diversity of distal transcription enhancers. Cell 144:327–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busslinger GA, Stocsits RR, van der Lelij P, Axelsson E, Tedeschi A, Galjart N, Peters JM (2017) Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl. Nature 544:503–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Ambrosio C, Schmidt CK, Katou Y, Kelly G, Itoh T, Shirahige K, Uhlmann F (2008) Identification of cis-acting sites for condensin loading onto budding yeast chromosomes. Genes Dev 22:2215–2227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Virgilio C (2012) The essence of yeast quiescence. FEMS Microbiol Rev 36:306–339

    Article  CAS  PubMed  Google Scholar 

  • de Wit E, Vos ES, Holwerda SJ, Valdes-Quezada C, Verstegen MJ, Teunissen H, Splinter E, Wijchers PJ, Krijger PH, de Laat W (2015) CTCF binding polarity determines chromatin looping. Mol Cell 60:676–684

    Article  CAS  PubMed  Google Scholar 

  • Deng W, Lee J, Wang H, Miller J, Reik A, Gregory PD, Dean A, Blobel GA (2012) Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 149:1233–1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eeftens JM, Bisht S, Kerssemakers J, Kschonsak M, Haering CH, Dekker C (2017) Real-time detection of condensin-driven DNA compaction reveals a multistep binding mechanism. EMBO J 36:3448–3457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estruch F (2000) Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol Rev 24:469–486

    Article  CAS  PubMed  Google Scholar 

  • Evertts AG, Manning AL, Wang X, Dyson NJ, Garcia BA, Coller HA (2013) H4K20 methylation regulates quiescence and chromatin compaction. Mol Biol Cell 24:3025–3037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fudenberg G, Abdennur N, Imakaev M, Goloborodko A, Mirny LA (2017) Emerging evidence of chromosome folding by loop extrusion. Cold Spring Harb Symp Quant Biol 82:45–55

    Article  PubMed  Google Scholar 

  • Galdieri L, Mehrotra S, Yu S, Vancura A (2010) Transcriptional regulation in yeast during diauxic shift and stationary phase. OMICS 14:629–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganji M, Shaltiel IA, Bisht S, Kim E, Kalichava A, Haering CH, Dekker C (2018) Real-time imaging of DNA loop extrusion by condensin. Science 360:102–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glynn EF, Megee PC, Yu HG, Mistrot C, Unal E, Koshland DE, DeRisi JL, Gerton JL (2004) Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol 2:E259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray JV, Petsko GA, Johnston GC, Ringe D, Singer RA, Werner-Washburne M (2004) “Sleeping beauty”: quiescence in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 68:187–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gullerova M, Proudfoot NJ (2008) Cohesin complex promotes transcriptional termination between convergent genes in S. pombe. Cell 132:983–995

    Article  CAS  PubMed  Google Scholar 

  • Haeusler RA, Pratt-Hyatt M, Good PD, Gipson TA, Engelke DR (2008) Clustering of yeast tRNA genes is mediated by specific association of condensin with tRNA gene transcription complexes. Genes Dev 22:2204–2214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen AS, Cattoglio C, Darzacq X, Tjian R (2018) Recent evidence that TADs and chromatin loops are dynamic structures. Nucleus 9:20–32

    Article  CAS  PubMed  Google Scholar 

  • Hassler M, Shaltiel IA, Haering CH (2018) Towards a unified model of SMC complex function. Curr Biol 28:R1266–R1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hocquet C, Robellet X, Modolo L, Sun XM, Burny C, Cuylen-Haering S, Toselli E, Clauder-Munster S, Steinmetz L, Haering CH et al (2018) Condensin controls cellular RNA levels through the accurate segregation of chromosomes instead of directly regulating transcription. Elife 7:e38517

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsieh TH, Weiner A, Lajoie B, Dekker J, Friedman N, Rando OJ (2015) Mapping nucleosome resolution chromosome folding in yeast by micro-C. Cell 162:108–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh TS, Fudenberg G, Goloborodko A, Rando OJ (2016) Micro-C XL: assaying chromosome conformation from the nucleosome to the entire genome. Nat Methods 13:1009–1011

    Article  CAS  PubMed  Google Scholar 

  • Kakui Y, Uhlmann F (2018) SMC complexes orchestrate the mitotic chromatin interaction landscape. Curr Genet 64:335–339

    Article  CAS  PubMed  Google Scholar 

  • Keenholtz RA, Dhanaraman T, Palou R, Yu J, D’Amours D, Marko JF (2017) Oligomerization and ATP stimulate condensin-mediated DNA compaction. Sci Rep 7:14279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KD, Tanizawa H, Iwasaki O, Noma K (2016) Transcription factors mediate condensin recruitment and global chromosomal organization in fission yeast. Nat Genet 48:1242–1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuang Z, Pinglay S, Ji H, Boeke JD (2017) Msn2/4 regulate expression of glycolytic enzymes and control transition from quiescence to growth. Elife 6:e29938

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuang Z, Ji H, Boeke JD (2018) Stress response factors drive regrowth of quiescent cells. Curr Genet 64:807–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laporte D, Courtout F, Tollis S, Sagot I (2016) Quiescent Saccharomyces cerevisiae forms telomere hyperclusters at the nuclear membrane vicinity through a multifaceted mechanism involving Esc1, the Sir complex, and chromatin condensation. Mol Biol Cell 27:1875–1884

    Article  PubMed  PubMed Central  Google Scholar 

  • Lengronne A, Katou Y, Mori S, Yokobayashi S, Kelly GP, Itoh T, Watanabe Y, Shirahige K, Uhlmann F (2004) Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 430:573–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Miles S, Breeden LL (2015) A genetic screen for saccharomyces cerevisiae mutants that fail to enter quiescence. G3 (Bethesda) 5:1783–1795

    Article  CAS  Google Scholar 

  • Litwin I, Wysocki R (2018) New insights into cohesin loading. Curr Genet 64:53–61

    Article  CAS  PubMed  Google Scholar 

  • Lohr D, Ide G (1979) Comparison on the structure and transcriptional capability of growing phase and stationary yeast chromatin: a model for reversible gene activation. Nucleic Acids Res 6:1909–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lupianez DG, Kraft K, Heinrich V, Krawitz P, Brancati F, Klopocki E, Horn D, Kayserili H, Opitz JM, Laxova R et al (2015) Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161:1012–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matityahu A, Onn I (2018) A new twist in the coil: functions of the coiled-coil domain of structural maintenance of chromosome (SMC) proteins. Curr Genet 64:109–116

    Article  CAS  PubMed  Google Scholar 

  • Matsushima Y, Sakamoto N, Awazu A (2019) Insulator activities of nucleosome-excluding DNA sequences without bound chromatin looping proteins. J Phys Chem B 123:1035–1043

    Article  CAS  PubMed  Google Scholar 

  • McKnight JN, Boerma JW, Breeden LL, Tsukiyama T (2015) Global promoter targeting of a conserved lysine deacetylase for transcriptional shutoff during quiescence entry. Mol Cell 59:732–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuguchi T, Fudenberg G, Mehta S, Belton JM, Taneja N, Folco HD, FitzGerald P, Dekker J, Mirny L, Barrowman J et al (2014) Cohesin-dependent globules and heterochromatin shape 3D genome architecture in S. pombe. Nature 516:432–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ngubo M, Kemp G, Patterton HG (2011) Nano-electrospray tandem mass spectrometric analysis of the acetylation state of histones H3 and H4 in stationary phase in Saccharomyces cerevisiae. BMC Biochem 12:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, Piolot T, van Berkum NL, Meisig J, Sedat J et al (2012) Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485:381–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ocampo-Hafalla M, Munoz S, Samora CP, Uhlmann F (2016) Evidence for cohesin sliding along budding yeast chromosomes. Open Biol 6:15078

    Article  CAS  Google Scholar 

  • Paul MR, Markowitz TE, Hochwagen A, Ercan S (2018) Condensin depletion causes genome decompaction without altering the level of global gene expression in Saccharomyces cerevisiae. Genetics 210:331–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul MR, Hochwagen A, Ercan S (2019) Condensin action and compaction. Curr Genet 65:407–415

    Article  CAS  PubMed  Google Scholar 

  • Pinon R (1978) Folded chromosomes in non-cycling yeast cells: evidence for a characteristic g0 form. Chromosoma 67:263–274

    Article  CAS  PubMed  Google Scholar 

  • Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES et al (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:1665–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao SSP, Huang SC, St Hilaire BG, Engreitz JM, Perez EM, Kieffer-Kwon KR, Sanborn AL, Johnstone SE, Bascom GD, Bochkov ID et al (2017) Cohesin loss eliminates all loop domains. Cell 171(305–320):e324

    Google Scholar 

  • Rawlings JS, Gatzka M, Thomas PG, Ihle JN (2011) Chromatin condensation via the condensin II complex is required for peripheral T-cell quiescence. EMBO J 30:263–276

    Article  CAS  PubMed  Google Scholar 

  • Robellet X, Vanoosthuyse V, Bernard P (2017) The loading of condensin in the context of chromatin. Curr Genet 63:577–589

    Article  CAS  PubMed  Google Scholar 

  • Roche B, Arcangioli B, Martienssen R (2017) Transcriptional reprogramming in cellular quiescence. RNA Biol 14:843–853

    Article  PubMed  PubMed Central  Google Scholar 

  • Rutledge MT, Russo M, Belton JM, Dekker J, Broach JR (2015) The yeast genome undergoes significant topological reorganization in quiescence. Nucleic Acids Res 43:8299–8313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanborn AL, Rao SS, Huang SC, Durand NC, Huntley MH, Jewett AI, Bochkov ID, Chinnappan D, Cutkosky A, Li J et al (2015) Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc Natl Acad Sci USA 112:E6456–E6465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutani T, Sakata T, Nakato R, Masuda K, Ishibashi M, Yamashita D, Suzuki Y, Hirano T, Bando M, Shirahige K (2015) Condensin targets and reduces unwound DNA structures associated with transcription in mitotic chromosome condensation. Nat Commun 6:7815

    Article  PubMed  Google Scholar 

  • Swygert SG, Kim S, Wu X, Fu T, Hsieh TH, Rando OJ, Eisenman RN, Shendure J, McKnight JN, Tsukiyama T (2019) Condensin-dependent chromatin compaction represses transcription globally during quiescence. Mol Cell 73(533–546):e534

    Google Scholar 

  • Tanizawa H, Kim KD, Iwasaki O, Noma KI (2017) Architectural alterations of the fission yeast genome during the cell cycle. Nat Struct Mol Biol 24:965–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terakawa T, Bisht S, Eeftens JM, Dekker C, Haering CH, Greene EC (2017) The condensin complex is a mechanochemical motor that translocates along DNA. Science 358:672–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toselli-Mollereau E, Robellet X, Fauque L, Lemaire S, Schiklenk C, Klein C, Hocquet C, Legros P, N’Guyen L, Mouillard L et al (2016) Nucleosome eviction in mitosis assists condensin loading and chromosome condensation. EMBO J 35:1565–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Hughes AC, Brandao HB, Walker B, Lierz C, Cochran JC, Oakley MG, Kruse AC, Rudner DZ (2018) In vivo evidence for ATPase-dependent DNA translocation by the Bacillus subtilis SMC condensin complex. Mol Cell 71(841–847):e845

    Google Scholar 

  • Werner-Washburne M, Braun E, Johnston GC, Singer RA (1993) Stationary phase in the yeast Saccharomyces cerevisiae. Microbiol Rev 57:383–401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Young CP, Hillyer C, Hokamp K, Fitzpatrick DJ, Konstantinov NK, Welty JS, Ness SA, Werner-Washburne M, Fleming AB, Osley MA (2017) Distinct histone methylation and transcription profiles are established during the development of cellular quiescence in yeast. BMC Genom 18:107

    Article  CAS  Google Scholar 

  • Yuen KC, Gerton JL (2018) Taking cohesin and condensin in context. PLoS Genet 14:e1007118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuen KC, Slaughter BD, Gerton JL (2017) Condensin II is anchored by TFIIIC and H3K4me3 in the mammalian genome and supports the expression of active dense gene clusters. Sci Adv 3:e1700191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.G.S. has been supported by Grants F32GM120962 from NIGMS and T32CA009657 from NCI, and T.T. and S.G.S. were supported by NIGMS R01GM111428.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Tsukiyama.

Additional information

Communicated by M. Kupiec.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Swygert, S.G., Tsukiyama, T. Unraveling quiescence-specific repressive chromatin domains. Curr Genet 65, 1145–1151 (2019). https://doi.org/10.1007/s00294-019-00985-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-019-00985-9

Keywords

  • Quiescence
  • Condensin
  • CIDs
  • TADs
  • Chromatin compaction
  • Cohesin
  • Micro-C XL