Current Genetics

, Volume 65, Issue 5, pp 1127–1134 | Cite as

Not quite the SSAme: unique roles for the yeast cytosolic Hsp70s

  • Sarah K. Lotz
  • Laura E. Knighton
  • Nitika
  • Gary W. Jones
  • Andrew W. TrumanEmail author


The Heat Shock Protein 70s (Hsp70s) are an essential family of proteins involved in folding of new proteins and triaging of damaged proteins for proteasomal-mediated degradation. They are highly conserved in all organisms, with each organism possessing multiple highly similar Hsp70 variants (isoforms). These isoforms have been previously thought to be identical in function differing only in their spatio-temporal expression pattern. The model organism Saccharomyces cerevisiae (baker’s yeast) expresses four Hsp70 isoforms Ssa1, 2, 3 and 4. Here, we review recent findings that suggest that despite their similarity, Ssa isoforms may have unique cellular functions.


Chaperone Hsp70 Ssa Isoform Evolution 



This work was supported by NCI R15CA208773 (AWT).


  1. Becker J, Walter W, Yan W, Craig EA (1996) Functional interaction of cytosolic hsp70 and a DnaJ-related protein, Ydj1p, in protein translocation in vivo. Mol Cell Biol 16(8):4378–4386CrossRefGoogle Scholar
  2. Boorstein WR, Craig EA (1990) Structure and regulation of the SSA4 HSP70 gene of Saccharomyces cerevisiae. J Biol Chem. 265(31):18912–18921Google Scholar
  3. Boorstein WR, Craig EA (1990) Transcriptional regulation of SSA3, an HSP70 gene from Saccharomyces cerevisiae. Mol Cell Biol 10(6):3262–3267CrossRefGoogle Scholar
  4. Boorstein WR, Ziegelhoffer T, Craig EA (1994) Molecular evolution of the HSP70 multigene family. J Mol Evo 38(1):1–17Google Scholar
  5. Brehme M, Voisine C (2016) Model systems of protein-misfolding diseases reveal chaperone modifiers of proteotoxicity. Dis Model Mech 9(8):823–838CrossRefGoogle Scholar
  6. Brown CR, McCann JA, Chiang HL (2000) The heat shock protein Ssa2p is required for import of fructose-1, 6-bisphosphatase into Vid vesicles. J Cell Biol 150(1):65–76CrossRefGoogle Scholar
  7. Christiano R, Nagaraj N, Frohlich F, Walther TC (2014) Global proteome turnover analyses of the Yeasts S cerevisiae and S pombe. Cell Rep 9(5):1959–1965CrossRefGoogle Scholar
  8. Cloutier P, Coulombe B (2013) Regulation of molecular chaperones through post-translational modifications: decrypting the chaperone code. Biochim Biophys Acta 1829(5):443–454CrossRefGoogle Scholar
  9. Craig EA, Marszalek J (2017) How do J-proteins get Hsp70 to do so many different things? Trends Biochem Sci 42(5):355–368CrossRefGoogle Scholar
  10. Dunn DM, Woodford MR, Truman AW, Jensen SM, Schulman J, Caza T et al (2015) c-Abl mediated tyrosine phosphorylation of Aha1 activates its co-chaperone function in cancer cells. Cell Rep 12(6):1006–1018CrossRefGoogle Scholar
  11. Dushukyan N, Dunn DM, Sager RA, Woodford MR, Loiselle DR, Daneshvar M et al (2017) Phosphorylation and ubiquitination regulate protein phosphatase 5 activity and its prosurvival role in kidney cancer. Cell Rep 21(7):1883–1895CrossRefGoogle Scholar
  12. Gao BC, Biosca J, Craig EA, Greene LE, Eisenberg E (1991) Uncoating of coated vesicles by yeast hsp70 proteins. J Biol Chem 266(29):19565–19571Google Scholar
  13. Gardner JM, Jaspersen SL (2014) Manipulating the yeast genome: deletion, mutation, and tagging by PCR. Methods Mol Biol 1205:45–78CrossRefGoogle Scholar
  14. Gowda NK, Kaimal JM, Masser AE, Kang W, Friedlander MR, Andreasson C (2016) Cytosolic splice isoform of Hsp70 nucleotide exchange factor Fes1 is required for the degradation of misfolded proteins in yeast. Mol Biol Cell 27(8):1210–1219CrossRefGoogle Scholar
  15. Guinan E, Jones GW (2009) Influence of Hsp70 chaperone machinery on yeast prion propagation. Protein Pept Lett 16(6):583–586CrossRefGoogle Scholar
  16. Gupta A, Puri A, Singh P, Sonam S, Pandey R, Sharma D (2018) The yeast stress inducible Ssa Hsp70 reduces alpha-synuclein toxicity by promoting its degradation through autophagy. PLoS Genet 14(10):e1007751CrossRefGoogle Scholar
  17. Hasin N, Cusack SA, Ali SS, Fitzpatrick DA, Jones GW (2014) Global transcript and phenotypic analysis of yeast cells expressing Ssa1, Ssa2, Ssa3 or Ssa4 as sole source of cytosolic Hsp70-Ssa chaperone activity. BMC Genomics 15:194CrossRefGoogle Scholar
  18. Huang D, Moffat J, Andrews B (2002) Dissection of a complex phenotype by functional genomics reveals roles for the yeast cyclin-dependent protein kinase Pho85 in stress adaptation and cell integrity. Mol Cell Biol 22(14):5076–5088CrossRefGoogle Scholar
  19. Hubscher V, Mudholkar K, Rospert S (2017) The yeast Hsp70 homolog Ssb: a chaperone for general de novo protein folding and a nanny for specific intrinsically disordered protein domains. Curr Genet 63(1):9–13CrossRefGoogle Scholar
  20. Jaiswal H, Conz C, Otto H, Wolfle T, Fitzke E, Mayer MP et al (2011) The chaperone network connected to human ribosome-associated complex. Mol Cell Biol 31(6):1160–1173CrossRefGoogle Scholar
  21. Jones GW, Masison DC (2003) Saccharomyces cerevisiae Hsp70 mutations affect [PSI+] prion propagation and cell growth differently and implicate Hsp40 and tetratricopeptide repeat cochaperones in impairment of [PSI+]. Genetics 163(2):495–506Google Scholar
  22. Jones G, Song Y, Chung S, Masison DC (2004) Propagation of Saccharomyces cerevisiae [PSI+] prion is impaired by factors that regulate Hsp70 substrate binding. Mol Cell Biol 24(9):3928–3937CrossRefGoogle Scholar
  23. Jung G, Jones G, Wegrzyn RD, Masison DC (2000) A role for cytosolic hsp70 in yeast [PSI(+)] prion propagation and [PSI(+)] as a cellular stress. Genetics 156(2):559–570Google Scholar
  24. Kabani M, Martineau CN (2008) Multiple hsp70 isoforms in the eukaryotic cytosol: mere redundancy or functional specificity? Curr Genomics 9(5):338–348CrossRefGoogle Scholar
  25. Kampinga HH, Craig EA (2011) The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11(8):579–592CrossRefGoogle Scholar
  26. Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU (2013) Molecular chaperone functions in protein folding and proteostasis. Ann Rev Biochem 82:323–355CrossRefGoogle Scholar
  27. Knighton LE, Delgado LE, Truman AW (2019) Novel insights into molecular chaperone regulation of ribonucleotide reductase. Curr Genet 65(2):477–482CrossRefGoogle Scholar
  28. Koike N, Hatano Y, Ushimaru T (2018) Heat shock transcriptional factor mediates mitochondrial unfolded protein response. Curr Genet 64(4):907–917CrossRefGoogle Scholar
  29. Kuzmin E, VanderSluis B, Wang W, Tan G, Deshpande R, Chen Y et al (2018) Systematic analysis of complex genetic interactions. Science 360(6386):pii:eaao1729. CrossRefGoogle Scholar
  30. Liu XD, Morano KA, Thiele DJ (1999) The yeast Hsp110 family member, Sse1, is an Hsp90 cochaperone. J Biol Chem 274(38):26654–26660CrossRefGoogle Scholar
  31. Loovers HM, Guinan E, Jones GW (2007) Importance of the Hsp70 ATPase domain in yeast prion propagation. Genetics 175(2):621–630CrossRefGoogle Scholar
  32. Matsumoto R, Akama K, Rakwal R, Iwahashi H (2005) The stress response against denatured proteins in the deletion of cytosolic chaperones SSA1/2 is different from heat-shock response in Saccharomyces cerevisiae. BMC Genomics 6:141CrossRefGoogle Scholar
  33. Matveenko AG, Barbitoff YA, Jay-Garcia LM, Chernoff YO, Zhouravleva GA (2018) Differential effects of chaperones on yeast prions: current view. Curr Genet 64(2):317–325CrossRefGoogle Scholar
  34. Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62(6):670–684CrossRefGoogle Scholar
  35. Mayer MP (2018) Intra-molecular pathways of allosteric control in Hsp70s. Philos Trans R. Soc Lond B Biol Sci 373(1749) pii:20170183. CrossRefGoogle Scholar
  36. Mollapour M, Neckers L (2012) Post-translational modifications of Hsp90 and their contributions to chaperone regulation. Biochim Biophys Acta 1823(3):648–655CrossRefGoogle Scholar
  37. Mollapour M, Tsutsumi S, Truman AW, Xu W, Vaughan CK, Beebe K et al (2011) Threonine 22 phosphorylation attenuates Hsp90 interaction with cochaperones and affects its chaperone activity. Mol Cell 41(6):672–681CrossRefGoogle Scholar
  38. Nillegoda NB, Wentink AS, Bukau B (2018) Protein disaggregation in multicellular organisms. Trends Biochem Sci 43(4):285–300CrossRefGoogle Scholar
  39. Nitika, Truman AW (2017) Cracking the chaperone code: cellular roles for Hsp70 phosphorylation. Trends Biochem Sci 42(12):932–935CrossRefGoogle Scholar
  40. Roberts BT, Moriyama H, Wickner RB (2004) [URE3] prion propagation is abolished by a mutation of the primary cytosolic Hsp70 of budding yeast. Yeast 21(2):107–117CrossRefGoogle Scholar
  41. Sager RA, Woodford MR, Neckers L, Mollapour M (2018) Detecting posttranslational modifications of Hsp90. Methods Mol Biol 1709:209–219CrossRefGoogle Scholar
  42. Sager RA, Woodford MR, Backe SJ, Makedon AM, Baker-Williams AJ, DiGregorio BT, et al. (2019) Post-translational Regulation of FNIP1 Creates a Rheostat for the Molecular Chaperone Hsp90. Cell Rep 26(5), 1344–56 e5.Google Scholar
  43. Schwimmer C, Masison DC (2002) Antagonistic interactions between yeast [PSI(+)] and [URE3] prions and curing of [URE3] by Hsp70 protein chaperone Ssa1p but not by Ssa2p. Mol Cell Biol 22(11):3590–3598CrossRefGoogle Scholar
  44. Sharma D, Masison DC (2011) Single methyl group determines prion propagation and protein degradation activities of yeast heat shock protein (Hsp)-70 chaperones Ssa1p and Ssa2p. Proc Natl Acad Sci USA 108(33):13665–13670CrossRefGoogle Scholar
  45. Sluder IT, Nitika, Knighton LE, Truman AW (2018) The Hsp70 co-chaperone Ydj1/HDJ2 regulates ribonucleotide reductase activity. PLoS Genet. 14(11):e1007462CrossRefGoogle Scholar
  46. Truman AW, Millson SH, Nuttall JM, Mollapour M, Prodromou C, Piper PW (2007) In the yeast heat shock response, Hsf1-directed induction of Hsp90 facilitates the activation of the Slt2 (Mpk1) mitogen-activated protein kinase required for cell integrity. Eukaryot Cell 6(4):744–752CrossRefGoogle Scholar
  47. Truman AW, Kristjansdottir K, Wolfgeher D, Hasin N, Polier S, Zhang H et al (2012) CDK-dependent Hsp70 Phosphorylation controls G1 cyclin abundance and cell-cycle progression. Cell 151(6):1308–1318CrossRefGoogle Scholar
  48. Truman AW, Kristjansdottir K, Wolfgeher D, Ricco N, Mayampurath A, Volchenboum SL et al (2015) Quantitative proteomics of the yeast Hsp70/Hsp90 interactomes during DNA damage reveal chaperone-dependent regulation of ribonucleotide reductase. J Proteomics 112:285–300CrossRefGoogle Scholar
  49. Truman AW, Kristjansdottir K, Wolfgeher D, Ricco N, Mayampurath A, Volchenboum SL et al (2015) The quantitative changes in the yeast Hsp70 and Hsp90 interactomes upon DNA damage. Data Brief 2:12–15CrossRefGoogle Scholar
  50. van Leeuwen J, Boone C, Andrews BJ (2017) Mapping a diversity of genetic interactions in yeast. Curr Opin Syst Biol. 6:14–21CrossRefGoogle Scholar
  51. van Leeuwen J, Pons C, Mellor JC, Yamaguchi TN, Friesen H, Koschwanez J, et al. (2016) Exploring genetic suppression interactions on a global scale. Science 354(6312).Google Scholar
  52. Verghese J, Abrams J, Wang Y, Morano KA (2012) Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 76(2):115–158CrossRefGoogle Scholar
  53. Waller SJ, Knighton LE, Crabtree LM, Perkins AL, Reitzel AM, Truman AW (2018) Characterizing functional differences in sea anemone Hsp70 isoforms using budding yeast. Cell Stress Chaperones 23(5):933–941. CrossRefGoogle Scholar
  54. Walsh P, Bursac D, Law YC, Cyr D, Lithgow T (2004) The J-protein family: modulating protein assembly, disassembly and translocation. EMBO Rep 5(6):567–571CrossRefGoogle Scholar
  55. Werner-Washburne M, Craig EA (1989) Expression of members of the Saccharomyces cerevisiae hsp70 multigene family. Genome 31(2):684–689CrossRefGoogle Scholar
  56. Werner-Washburne M, Stone DE, Craig EA (1987) Complex interactions among members of an essential subfamily of hsp70 genes in Saccharomyces cerevisiae. Mol Cell Biol 7(7):2568–2577CrossRefGoogle Scholar
  57. Werner-Washburne M, Becker J, Kosic-Smithers J, Craig EA (1989) Yeast Hsp70 RNA levels vary in response to the physiological status of the cell. J Bacteriol 171(5):2680–2688CrossRefGoogle Scholar
  58. Wolfgeher D, Dunn DM, Woodford MR, Bourboulia D, Bratslavsky G, Mollapour M et al (2015) The dynamic interactome of human Aha1 upon Y223 phosphorylation. Data Brief 5:752–755CrossRefGoogle Scholar
  59. Woodford MR, Truman AW, Dunn DM, Jensen SM, Cotran R, Bullard R et al (2016) Mps1 mediated phosphorylation of Hsp90 confers renal cell carcinoma sensitivity and selectivity to Hsp90 Inhibitors. Cell Rep 14(4):872–884CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biological SciencesThe University of North Carolina At CharlotteCharlotteUSA
  2. 2.Centre for Biomedical Science Research, School of Clinical and Applied SciencesLeeds Beckett UniversityLeedsUK

Personalised recommendations