Skip to main content

Advertisement

Log in

(p)ppGpp: the magic governor of bacterial growth economy

  • Mini-Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

A fundamental question in microbiology is how bacterial cells manage to coordinate gene expression with cell growth during adapting to various environmental conditions. Although the cellular responses to changing environments have been extensively studied using transcriptomic and proteomic approaches, it remains poorly understood regarding the molecular strategy enabling bacteria to manipulate the global gene expression patterns. The alarmone (p)ppGpp is a key secondary messenger involved in regulating various biochemical and physiological processes of bacterial cells. However, despite of the extensive studies of (p)ppGpp signaling in stringent response during the past 50 years, the connection between (p)ppGpp and exponential growth remains poorly understood. Our recent work demonstrates that (p)ppGpp is strongly involved in regulating cell growth of Escherichia coli through balancing the cellular investment on metabolic proteins and ribosomes, highlighting itself as a magic governor of bacterial global resource allocation. In this mini-review, we briefly summarize some historical perspectives and current progress of the relation between (p)ppGpp and bacterial exponential growth. Two important future directions are also highlighted: the first direction is to elucidate the cellular signal that triggers (p)ppGpp accumulation during poor growth conditions; the second direction is to investigate the relation between (p)ppGpp and exponential growth for bacterial species other than E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bremer H, Dennis P (1996) Modulation of chemical composition and other parameters of the cell at different exponential growth rates. Escherichia coli and Salmonella, ed Neidhardt FC (Am Soc Microbiol, Washington, DC) 2:1553–1569

    Google Scholar 

  • Castro-Cerritos KV, Lopez-Torres A, Obregón-Herrera A, Wrobel K, Wrobel K, Pedraza-Reyes M (2018) LC–MS/MS proteomic analysis of starved Bacillus subtilis cells overexpressing ribonucleotide reductase (nrdEF): implications in stress-associated mutagenesis. Curr Genet 64(1):215–222

    Article  CAS  PubMed  Google Scholar 

  • Cook GM, Berney M, Gebhard S, Heinemann M, Cox RA, Danilchanka O, Niederweis M (2009) Physiology of mycobacteria. Adv Microb Physiol 55:81–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai X, Zhu M, Warren M, Balakrishnan R, Patsalo V, Okano H, Williamson JR, Fredrick K, Wang YP, Hwa T (2016) Reduction of translating ribosomes enables Escherichia coli to maintain elongation rates during slow growth. Nat Microbiol 2:16231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai X, Zhu M, Warren M, Balakrishnan R, Okano H, Williamson JR, Fredrick K, Hwa T (2018) Slowdown of translational elongation in Escherichia coli under hyperosmotic stress. MBio 9:1

    Article  Google Scholar 

  • Dalebroux ZD, Swanson MS (2012) ppGpp: magic beyond RNA polymerase. Nat Rev Microbiol 10(3):203–212

    Article  CAS  PubMed  Google Scholar 

  • Gaal T, Gourse RL (1990) Guanosine 3′-diphosphate 5′-diphosphate is not required for growth rate-dependent control of rRNA synthesis in Escherichia coli. Proc Natl Acad Sci USA 87(14):5533–5537

    Article  CAS  PubMed  Google Scholar 

  • Gohara DW, Yap MNF (2018) Survival of the drowsiest: the hibernating 100S ribosome in bacterial stress management. Curr Genet 64(4):753–760

    Article  CAS  Google Scholar 

  • Gourse RL, Chen AY, Gopalkrishnan S, Sanchez-Vazquez P, Myers A, Ross W (2018) Transcriptional Responses to ppGpp and DksA. Annu Rev Microbiol 72:163–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauryliuk V, Atkinson GC, Murakami KS, Tenson T, Gerdes K (2015) Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat Rev Microbiol 13(5):298–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez VJ, Bremer H (1990) Guanosine tetraphosphate (ppGpp) dependence of the growth rate control of rrnB P1 promoter activity in Escherichia coli. J Biol Chem 265(20):11605–11614

    CAS  PubMed  Google Scholar 

  • Hernandez VJ, Bremer H (1993) Characterization of RNA and DNA synthesis in Escherichia coli strains devoid of ppGpp. J Biol Chem 268(15):10851–10862

    CAS  PubMed  Google Scholar 

  • Hui S, Silverman JM, Chen SS, Erickson DW, Basan M, Wang J, Hwa T, Williamson JR (2015) Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria. Mol Syst Biol 11(1):784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klumpp S, Hwa T (2014) Bacterial growth: global effects on gene expression, growth feedback and proteome partition. Curr Opin Biotechnol 28:96–102

    Article  CAS  PubMed  Google Scholar 

  • Klumpp S, Zhang Z, Hwa T (2009) Growth rate-dependent global effects on gene expression in bacteria. Cell 139(7):1366–1375

    Article  PubMed  PubMed Central  Google Scholar 

  • Klumpp S, Scott M, Pedersen S, Hwa T (2013) Molecular crowding limits translation and cell growth. Proc Natl Acad Sci USA 110(42):16754–16759

    Article  CAS  PubMed  Google Scholar 

  • Krasny L, Gourse RL (2004) An alternative strategy for bacterial ribosome synthesis: Bacillus subtilis rRNA transcription regulation. EMBO J 23(22):4473–4483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magnusson LU, Farewell A, Nystrom T (2005) ppGpp: a global regulator in Escherichia coli. Trends Microbiol 13(5):236–242

    Article  CAS  PubMed  Google Scholar 

  • Monod J (1949) The growth of bacterial cultures. Annu Rev Microbiol 3(1):371–394

    Article  CAS  Google Scholar 

  • Murphy H, Cashel M (2003) Isolation of RNA polymerase suppressors of a (p)ppGpp deficiency. Methods Enzymol 371:596–601

    Article  CAS  PubMed  Google Scholar 

  • Murray DK, Bremer H (1996) Control of spoT-dependent ppGpp synthesis and degradation in Escherichia coli. J Mol Biol 259(1):41–57

    Article  CAS  PubMed  Google Scholar 

  • Paul BJ, Ross W, Gaal T, Gourse RL (2004) rRNA transcription in Escherichia coli. Annu Rev Genet 38:749–770

    Article  CAS  PubMed  Google Scholar 

  • Potrykus K, Cashel M (2008) (p)ppGpp: still magical? Annu Rev Microbiol 62:35–51

    Article  CAS  PubMed  Google Scholar 

  • Potrykus K, Murphy H, Philippe N, Cashel M (2011) ppGpp is the major source of growth rate control in E. coli. Environ Microbiol 13(3):563–575

    Article  CAS  PubMed  Google Scholar 

  • Scott M, Hwa T (2011) Bacterial growth laws and their applications. Curr Opin Biotechnol 22(4):559–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott M, Gunderson CW, Mateescu EM, Zhang Z, Hwa T (2010) Interdependence of cell growth and gene expression: origins and consequences. Science 330(6007):1099–1102

    Article  CAS  PubMed  Google Scholar 

  • Scott M, Klumpp S, Mateescu EM, Hwa T (2014) Emergence of robust growth laws from optimal regulation of ribosome synthesis. Mol Syst Biol 10:747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivatsan A, Wang JD (2008) Control of bacterial transcription, translation and replication by (p)ppGpp. Curr Opin Microbiol 11(2):100–105

    Article  CAS  PubMed  Google Scholar 

  • Steinchen W, Bange G (2016) The magic dance of the alarmones (p)ppGpp. Mol Microbiol 101(4):531–544

    Article  CAS  PubMed  Google Scholar 

  • Sun D, Lee G, Lee JH, Kim HY, Rhee HW, Park SY, Kim KJ, Kim Y, Kim BY, Hong JI, Park C, Choy HE, Kim JH, Jeon YH, Chung J (2010) A metazoan ortholog of SpoT hydrolyzes ppGpp and functions in starvation responses. Nat Struct Mol Biol 17(10):1188–1194

    Article  CAS  PubMed  Google Scholar 

  • Xiao H, Kalman M, Ikehara K, Zemel S, Glaser G, Cashel M (1991) Residual guanosine 3′,5′-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J Biol Chem 266(9):5980–5990

    CAS  PubMed  Google Scholar 

  • You C, Okano H, Hui S, Zhang Z, Kim M, Gunderson CW, Wang YP, Lenz P, Yan D, Hwa T (2013) Coordination of bacterial proteome with metabolism by cyclic AMP signalling. Nature 500(7462):301–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu M, Dai X (2019) Growth suppression by altered (p)ppGpp levels results from non-optimal resource allocation in Escherichia coli. Nucleic Acids Res gkz211. https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkz211/5420536

Download references

Acknowledgements

This work was supported by the National Natural Science Fund of China (nos. 31700089, 31700039 and 31870028) and by self-determined research funds of CCNU from the colleges’ basic research and operation of MOE.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manlu Zhu or Xiongfeng Dai.

Additional information

Communicated by M. Kupiec.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Pan, Y. & Dai, X. (p)ppGpp: the magic governor of bacterial growth economy. Curr Genet 65, 1121–1125 (2019). https://doi.org/10.1007/s00294-019-00973-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-019-00973-z

Keywords

Navigation