Skip to main content

(Un)folding mechanisms of adaptation to ER stress: lessons from aneuploidy

Abstract

During stress, accumulation of misfolded proteins in the endoplasmic reticulum (ER) triggers activation of the adaptive mechanisms that restore protein homeostasis. One mechanism that eukaryotic cells use to respond to ER stress is through activation of the unfolded protein response (UPR) signaling pathway, which initiates degradation of misfolded proteins and leads to inhibition of translation and increased expression of chaperones and oxidative folding components that enhance ER protein folding capacity. However, the mechanisms of adaptation to ER stress are not limited to the UPR. Using yeast Saccharomyces cerevisiae, we recently discovered that the protein folding burden in the ER can be alleviated in a UPR-independent manner through duplication of whole chromosomes containing ER stress-protective genes. Here we discuss our findings and their implication to our understanding of the mechanisms by which cells respond to protein misfolding in the ER.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Barnes G, Hansen WJ, Holcomb CL, Rine J (1984) Asparagine-linked glycosylation in Saccharomyces cerevisiae: genetic analysis of an early step. Mol Cell Biol 4(11):2381–2388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaupere C et al (2018) Genetic screen identifies adaptive aneuploidy as a key mediator of ER stress resistance in yeast. Proc Natl Acad Sci USA 115(38):9586–9591

    Article  CAS  PubMed  Google Scholar 

  • Bretthauer RK (2009) Structure, expression, and regulation of UDP-GlcNAc: dolichol phosphate GlcNAc-1-phosphate transferase (DPAGT1). Curr Drug Targets 10(6):477–482

    Article  CAS  PubMed  Google Scholar 

  • Chawla A, Chakrabarti S, Ghosh G, Niwa M (2011) Attenuation of yeast UPR is essential for survival and is mediated by IRE1 kinase. J Cell Biol 193(1):41–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Bradford WD, Seidel CW, Li R (2012) Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy. Nature 482(7384):246–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Defenouillere Q, Fromont-Racine M (2017) The ribosome-bound quality control complex: from aberrant peptide clearance to proteostasis maintenance. Curr Genet 63(6):997–1005

    Article  CAS  PubMed  Google Scholar 

  • Denzel MS, et al (2014) Hexosamine pathway metabolites enhance protein quality control and prolong life. Cell 156(6):1167–1178

    Article  CAS  PubMed  Google Scholar 

  • Dephoure N et al (2014) Quantitative proteomic analysis reveals posttranslational responses to aneuploidy in yeast. eLife 3:e03023

    Article  PubMed  PubMed Central  Google Scholar 

  • Finley D, Chen X, Walters KJ (2016) Gates, channels, and switches: elements of the proteasome machine. Trends Biochem Sci 41(1):77–93

    Article  CAS  PubMed  Google Scholar 

  • Gardner BM, Pincus D, Gotthardt K, Gallagher CM, Walter P (2013) Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harb Perspect Biol 5(3):a013169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giaever G et al (1999) Genomic profiling of drug sensitivities via induced haploinsufficiency. Nat Genet 21(3):278–283

    Article  CAS  PubMed  Google Scholar 

  • Gottschling DE, Nystrom T (2017) The upsides and downsides of organelle interconnectivity. Cell 169(1):24–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groll M et al (1999) The catalytic sites of 20S proteasomes and their role in subunit maturation: a mutational and crystallographic study. Proc Natl Acad Sci USA 96(20):10976–10983

    Article  CAS  PubMed  Google Scholar 

  • Helenius A, Aebi M (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73:1019–1049

    Article  CAS  PubMed  Google Scholar 

  • Karagoz GE et al (2017) An unfolded protein-induced conformational switch activates mammalian IRE1. eLife 6:e30700

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaya A et al (2015) Adaptive aneuploidy protects against thiol peroxidase deficiency by increasing respiration via key mitochondrial proteins. Proc Natl Acad Sci USA 112(34):10685–10690

    Article  CAS  PubMed  Google Scholar 

  • Koga H, Kaushik S, Cuervo AM (2011) Protein homeostasis and aging: the importance of exquisite quality control. Ageing Res Rev 10(2):205–215

    Article  CAS  PubMed  Google Scholar 

  • Koike N, Hatano Y, Ushimaru T (2018) Heat shock transcriptional factor mediates mitochondrial unfolded protein response. Curr Genet 64(4):907–917

    Article  CAS  PubMed  Google Scholar 

  • Labunskyy VM et al (2014) Lifespan extension conferred by endoplasmic reticulum secretory pathway deficiency requires induction of the unfolded protein response. PLoS Genet 10(1):e1004019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lennon K, Bird A, Chen YF, Pretel R, Kukuruzinska MA (1997) The dual role of mRNA half-lives in the expression of the yeast ALG7 gene. Mol Cell Biochem 169(1–2):95–106

    Article  CAS  PubMed  Google Scholar 

  • Livneh I, Cohen-Kaplan V, Cohen-Rosenzweig C, Avni N, Ciechanover A (2016) The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death. Cell Res 26(8):869–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oromendia AB, Dodgson SE, Amon A (2012) Aneuploidy causes proteotoxic stress in yeast. Genes Dev 26(24):2696–2708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavelka N et al (2010) Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast. Nature 468(7321):321–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira T et al (2018) Quantitative operating principles of yeast metabolism during adaptation to heat stress. Cell Rep 22(9):2421–2430

    Article  CAS  PubMed  Google Scholar 

  • Pincus D et al (2010) BiP binding to the ER-stress sensor Ire1 tunes the homeostatic behavior of the unfolded protein response. PLoS Biol 8(7):e1000415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selmecki A, Forche A, Berman J (2006) Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 313(5785):367–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stauffer B, Powers T (2017) Target of rapamycin signaling mediates vacuolar fragmentation. Curr Genet 63(1):35–42

    Article  CAS  PubMed  Google Scholar 

  • Sunshine AB et al (2015) The fitness consequences of aneuploidy are driven by condition-dependent gene effects. PLoS Biol 13(5):e1002155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabas I, Ron D (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 13(3):184–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres EM et al (2007) Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science 317(5840):916–924

    Article  CAS  PubMed  Google Scholar 

  • Travers KJ et al (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101(3):249–258

    Article  CAS  PubMed  Google Scholar 

  • Van Dalfsen KM et al (2018) Global proteome remodeling during ER stress involves Hac1-driven expression of long undecoded transcript isoforms. Dev Cell 46(2):219–235 (e218)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334(6059):1081–1086

    Article  CAS  Google Scholar 

  • Weimer S et al (2014) d-Glucosamine supplementation extends life span of nematodes and of ageing mice. Nat Commun 5:3563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yona AH et al (2012) Chromosomal duplication is a transient evolutionary solution to stress. Proc Natl Acad Sci USA 109(51):21010–21015

    Article  PubMed  Google Scholar 

  • Yoshida H (2007) ER stress and diseases. FEBS J 274(3):630–658

    Article  CAS  Google Scholar 

  • Zhu J, Tsai HJ, Gordon MR, Li R (2018) Cellular stress associated with aneuploidy. Dev Cell 44(4):420–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health Grant AG054566 (to VML). This research was conducted while VML was an AFAR Research Grant recipient from the American Federation for Aging Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vyacheslav M. Labunskyy.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beaupere, C., Labunskyy, V.M. (Un)folding mechanisms of adaptation to ER stress: lessons from aneuploidy. Curr Genet 65, 467–471 (2019). https://doi.org/10.1007/s00294-018-0914-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-018-0914-9

Keywords

  • Aneuploidy
  • Genome instability
  • Next-generation sequencing
  • ER stress resistance
  • Unfolded protein response