Variety is the spice of life: how to explore a redox-dependent heterogeneity in genomically identical cellular populations

Abstract

Cellular heterogeneity is a widespread phenomenon, existing across organisms and serving a crucial role in evolution and cell survival. Genetically identical cells may as a result present in a variety of forms with different gene and protein expressions, as well as oxidation level. As a result, a wide range of methodologies and techniques for dissecting different types of genetic, proteomic, and phenotypic heterogeneous traits have emerged in recent years in an effort to better understand how diversity exists within a single population and its effects therein. A key area of interest seeks to establish the ways in which cellular heterogeneity and aging processes interact with each other. Here, we discuss recent developments in defining cellular heterogeneity, specifically focusing on redox-dependent heterogeneity, its characterization, quantification, and behavior. We further expand on potential applications of a cell sorting-based methodology for distinguishing between cells harboring different redox statuses. As an example, we use organelle-specific fluorescence protein-based probes to examine the crosstalk between cytosol and mitochondria in a yeast strain lacking glutathione reductase. Together, these may have wide-reaching implications for future research into redox-associated factors, as well as mechanisms of redox-dependent heterogeneity and its influence on organelles and the cell at large.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Ackermann M (2015) A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol 13:497–508. https://doi.org/10.1038/nrmicro3491

    Article  CAS  PubMed  Google Scholar 

  2. Altschuler SJ, Wu LF (2010) Cellular heterogeneity: do differences make a difference? Cell 141:559–563. https://doi.org/10.1016/j.cell.2010.04.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bhat AV, Hora S, Pal A, Jha S, Taneja R (2017) Stressing the (epi)genome: dealing with ROS in cancer. Antioxid Redox Signal. https://doi.org/10.1089/ars.2017.7158

    Article  PubMed  Google Scholar 

  4. Bilan DS, Belousov VV (2017) New tools for redox biology: from imaging to manipulation. Free Radic Biol Med 109:167–188. https://doi.org/10.1016/j.freeradbiomed.2016.12.004

    Article  CAS  PubMed  Google Scholar 

  5. Bilan DS, Belousov VV (2018) In vivo imaging of hydrogen peroxide with hyper probes. Antioxid Redox Signal 29:569–584. https://doi.org/10.1089/ars.2018.7540

    Article  CAS  PubMed  Google Scholar 

  6. Birk J, Ramming T, Odermatt A, Appenzeller-Herzog C (2013) Green fluorescent protein-based monitoring of endoplasmic reticulum redox poise. Front Genet 4:108. https://doi.org/10.3389/fgene.2013.00108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Calabrese G, Morgan B, Riemer J (2017) Mitochondrial glutathione: regulation and functions. Antioxid Redox Signal 27:1162–1177. https://doi.org/10.1089/ars.2017.7121

    Article  CAS  PubMed  Google Scholar 

  8. Castex J et al (2017) Inactivation of Lsd1 triggers senescence in trophoblast stem cells by induction of Sirt4. Cell Death Dis 8:e2631. https://doi.org/10.1038/cddis.2017.48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cerulus B, New AM, Pougach K, Verstrepen KJ (2016) Noise and epigenetic inheritance of single-cell division times influence population. Fitness Curr Biol 26:1138–1147. https://doi.org/10.1016/j.cub.2016.03.010

    Article  CAS  PubMed  Google Scholar 

  10. Cheung P et al (2018) Single-cell chromatin modification profiling reveals increased epigenetic variations with aging. Cell 173:1385–1397 e1314. https://doi.org/10.1016/j.cell.2018.03.079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chiu WK, Towheed A, Palladino MJ (2014) Genetically encoded redox sensors. Methods Enzymol 542:263–287. https://doi.org/10.1016/B978-0-12-416618-9.00014-5

    Article  CAS  PubMed  Google Scholar 

  12. Davey HM, Kell DB (1996) Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol Rev 60:641–696

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Deglasse JP, Roma LP, Pastor-Flores D, Gilon P, Dick TP, Jonas JC (2018) Glucose acutely reduces cytosolic and mitochondrial H2O2 in rat pancreatic beta cells. Antioxid Redox Signal. https://doi.org/10.1089/ars.2017.7287

    Article  PubMed  Google Scholar 

  14. Elbaz-Alon Y et al (2014) The yeast oligopeptide transporter Opt2 is localized to peroxisomes and affects glutathione redox homeostasis. FEMS Yeast Res 14:1055–1067. https://doi.org/10.1111/1567-1364.12196

    CAS  Article  Google Scholar 

  15. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297:1183–1186. https://doi.org/10.1126/science.1070919

    Article  CAS  PubMed  Google Scholar 

  16. Fan Y, Makar M, Wang MX, Ai HW (2017) Monitoring thioredoxin redox with a genetically encoded red fluorescent biosensor. Nat Chem Biol 13:1045–1052. https://doi.org/10.1038/nchembio.2417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hu Y, An Q, Sheu K, Trejo B, Fan S, Guo Y (2018) Single cell multi-omics technology: methodology and application front. Cell Dev Biol 6:28. https://doi.org/10.3389/fcell.2018.00028

    Article  Google Scholar 

  18. Jakob U, Reichmann D (2013) Oxidative stress and redox regulation. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5787-5

    Book  Google Scholar 

  19. Kalyanaraman B et al (2012) Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic Biol Med 52:1–6. https://doi.org/10.1016/j.freeradbiomed.2011.09.030

    Article  CAS  Google Scholar 

  20. Knoefler D, Thamsen M, Koniczek M, Niemuth NJ, Diederich AK, Jakob U (2012) Quantitative in vivo redox sensors uncover oxidative stress as an early event in life. Mol Cell 47:767–776. https://doi.org/10.1016/j.molcel.2012.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kritsiligkou P, Rand JD, Weids AJ, Wang X, Kershaw CJ, Grant CM (2018) Endoplasmic reticulum (ER) stress-induced reactive oxygen species (ROS) are detrimental for the fitness of a thioredoxin reductase mutant. J Biol Chem 293:11984–11995. https://doi.org/10.1074/jbc.RA118.001824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lukyanov KA, Belousov VV (2014) Genetically encoded fluorescent redox sensors. Biochim Biophys Acta 1840:745–756. https://doi.org/10.1016/j.bbagen.2013.05.030

    Article  CAS  PubMed  Google Scholar 

  23. Martinez-Jimenez CP et al (2017) Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science 355:1433–1436. https://doi.org/10.1126/science.aah4115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Melentijevic I et al (2017) C. elegans neurons jettison protein aggregates and mitochondria under neurotoxic stress. Nature 542:367–371. https://doi.org/10.1038/nature21362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Meyer AJ, Dick TP (2010) Fluorescent protein-based redox probes. Antioxid Redox Signal 13:621–650. https://doi.org/10.1089/ars.2009.2948

    Article  CAS  Google Scholar 

  26. Morgan B, Sobotta MC, Dick TP (2011) Measuring E(GSH) and H2O2 with roGFP2-based redox probes. Free Radic Biol Med 51:1943–1951. https://doi.org/10.1016/j.freeradbiomed.2011.08.035

    Article  CAS  PubMed  Google Scholar 

  27. Morgan B et al (2016) Real-time monitoring of basal H2O2 levels with peroxiredoxin-based probes. Nat Chem Biol 12:437–443. https://doi.org/10.1038/nchembio.2067

    Article  CAS  PubMed  Google Scholar 

  28. Niedzielska E, Smaga I, Gawlik M, Moniczewski A, Stankowicz P, Pera J, Filip M (2016) Oxidative stress in neurodegenerative diseases. Mol Neurobiol 53:4094–4125. https://doi.org/10.1007/s12035-015-9337-5

    Article  CAS  PubMed  Google Scholar 

  29. Outten CE, Culotta VC (2004) Alternative start sites in the Saccharomyces cerevisiae GLR1 gene are responsible for mitochondrial and cytosolic isoforms of glutathione reductase. J Biol Chem 279:7785–7791. https://doi.org/10.1074/jbc.M312421200

    Article  CAS  PubMed  Google Scholar 

  30. Radzinski M et al (2018) Temporal profiling of redox-dependent heterogeneity in single cells. Elife. https://doi.org/10.7554/eLife.37623

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rosenwasser S et al (2011) Organelles contribute differentially to reactive oxygen species-related events during extended darkness. Plant Physiol 156:185–201. https://doi.org/10.1104/pp.110.169797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Singh P, Li R (2018) Emerging roles for sphingolipids in cellular aging. Curr Genet 64:761–767. https://doi.org/10.1007/s00294-017-0799-z

    Article  CAS  PubMed  Google Scholar 

  33. Somel M, Khaitovich P, Bahn S, Paabo S, Lachmann M (2006) Gene expression becomes heterogeneous with age. Curr Biol 16:R359–R360. https://doi.org/10.1016/j.cub.2006.04.024

    Article  CAS  PubMed  Google Scholar 

  34. Tawfik DS (2010) Messy biology and the origins of evolutionary innovations. Nat Chem Biol 6:692–696. https://doi.org/10.1038/nchembio.441

    Article  CAS  PubMed  Google Scholar 

  35. Urbancsok J, Bones AM, Kissen R (2018) Arabidopsis mutants impaired in glutathione biosynthesis exhibit higher sensitivity towards the glucosinolate hydrolysis product allyl-isothiocyanate. Sci Rep 8:9809. https://doi.org/10.1038/s41598-018-28099-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang N, Cao L (2017) Starvation signals in yeast are integrated to coordinate metabolic reprogramming and stress response to ensure longevity. Curr Genet 63:839–843. https://doi.org/10.1007/s00294-017-0697-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Tommer Ravid for providing us with the Δglr1 strain. This work was supported by the Israel Science Foundation (1765/13), Legacy Heritage Biomedical Science Partnership (1649/16), Human Frontier Science program (CDA00064/2014), and the US-Israel Binational Science Foundation (2015056).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dana Reichmann.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Radzinski, M., Reichmann, D. Variety is the spice of life: how to explore a redox-dependent heterogeneity in genomically identical cellular populations. Curr Genet 65, 301–306 (2019). https://doi.org/10.1007/s00294-018-0878-9

Download citation

Keywords

  • Heterogeneity
  • Cell-to-cell diversity
  • roGFP
  • glr1
  • Redox sensors
  • Redox biology