Skip to main content

Mechanisms for the epigenetic inheritance of stress response in single cells

Abstract

Cells have evolved to dynamically respond to different types of environmental and physiological stress conditions. The information about a previous stress stimulus experience by a mother cell can be passed to its descendants, allowing them to better adapt to and survive in new environments. In recent years, live-cell imaging combined with cell-lineage tracking approaches has elucidated many important principles that guide stress inheritance at the single-cell and population level. In this review, we summarize different strategies that cells can employ to pass the ‘memory’ of previous stress responses to their descendants. Among these strategies, we focus on a recent discovery of how specific features of Msn2 nucleo-cytoplasmic shuttling dynamics could be inherited across cell lineages. We also discuss how stress response can be transmitted to progenies through changes in chromatin and through partitioning of anti-stress factors and/or damaged macromolecules between mother and daughter cells during cell division. Finally, we highlight how emergent technologies will help address open questions in the field.

This is a preview of subscription content, access via your institution.

Fig. 1

Figure panel was taken from (Chatterjee and Acar 2018)

Fig. 2
Fig. 3

References

  • Acar M, Becskei A, van Oudenaarden A (2005) Enhancement of cellular memory by reducing stochastic transitions. Nature 435:228–232

    CAS  Article  Google Scholar 

  • Acar M, Mettetal JT, Van Oudenaarden A (2008) Stochastic switching as a survival strategy in fluctuating environments. Nat Genet 40:471–475

    CAS  Article  Google Scholar 

  • Agger K, Cloos PAC, Rudkjær L, Williams K, Andersen G, Christensen J, Helin K (2009) The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A–ARF locus in response to oncogene-and stress-induced senescence. Genes Dev 23:1171–1176. https://doi.org/10.1101/gad.510809.GENES

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Aguilaniu H, Gustafsson L, Rigoulet M, Nyström T (2003) Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 299:1751–1753

    CAS  Article  Google Scholar 

  • Allen MD, Zhang J (2006) Subcellular dynamics of protein kinase A activity visualized by FRET-based reporters. Biochem Biophys Res Commun 348:716–721

    CAS  Article  Google Scholar 

  • Ankers JM, Spiller DG, White MR, Harper CV (2008) Spatio-temporal protein dynamics in single living cells. Curr Opin Biotechnol 19:375–380

    CAS  Article  Google Scholar 

  • Annacondia ML, Magerøy MH, Martinez G (2018) Stress response regulation by epigenetic mechanisms: changing of the guards. Physiol Plant 162:239–250

    CAS  Article  Google Scholar 

  • Brouns SJJ et al (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–964

    CAS  Article  Google Scholar 

  • Bufalino MR, DeVeale B, van der Kooy D (2013) The asymmetric segregation of damaged proteins is stem cell-type dependent. J Cell Biol 201:523–530

    CAS  Article  Google Scholar 

  • Bungard D et al (2010) Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation. Science 329:1201–1205

    CAS  Article  Google Scholar 

  • Cai L, Dalal CK, Elowitz MB (2008) Frequency-modulated nuclear localization bursts coordinate gene regulation. Nature 455:485–490

    CAS  Article  Google Scholar 

  • Cha T-L et al (2005) Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3. Science 310:306–310

    CAS  Article  Google Scholar 

  • Chatterjee M, Acar M (2018) Heritable stress response dynamics revealed by single-cell genealogy. Sci Adv. https://doi.org/10.1126/sciadv.1701775

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheglakov Z, Cronin TM, He C, Weizmann Y (2015) Live cell microRNA imaging using cascade hybridization reaction. J Am Chem Soc 137:6116–6119

    CAS  Article  Google Scholar 

  • Chen Q, Yan W, Duan E (2016) Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications. Nat Rev Genet 17:733–743

    CAS  Article  Google Scholar 

  • Coelho M et al (2013) Fission yeast does not age under favorable conditions, but does so after stress. Curr Biol 23:1844–1852

    CAS  Article  Google Scholar 

  • Colombo S et al (2017) Detection of cAMP and of PKA activity in Saccharomyces cerevisiae single cells using fluorescence resonance energy transfer (FRET) probes. Biochem Biophys Res Commun 487:594–599

    CAS  Article  Google Scholar 

  • D’Urso A, Brickner JH (2014) Mechanisms of epigenetic memory. Trends Genet 30:230–236

    Article  Google Scholar 

  • D’Urso A, Brickner JH (2017) Epigenetic transcriptional memory. Curr Genet 63:435–439

    Article  Google Scholar 

  • Dalal CK, Cai L, Lin Y, Rahbar K, Elowitz MB (2014) Pulsatile dynamics in the yeast proteome. Curr Biol 24:2189–2194

    CAS  Article  Google Scholar 

  • De Wever V, Reiter W, Ballarini A, Ammerer G, Brocard C (2005) A dual role for PP1 in shaping the Msn2-dependent transcriptional response to glucose starvation. EMBO J 24:4115–4123

    Article  Google Scholar 

  • Estruch F (2000) Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol Rev 24:469–486

    CAS  Article  Google Scholar 

  • Fuentealba LC, Eivers E, Geissert D, Taelman V, De Robertis EM Asymmetric mitosis: unequal segregation of proteins destined for degradation. Proc Natl Acad Sci USA 105, 7732–7737 (2008)

    Article  Google Scholar 

  • Geva-Zatorsky N et al (2006) Oscillations and variability in the p53 system. Mol Syst Biol 2:1–13

    Article  Google Scholar 

  • Ghaemmaghami S et al (2003) Global analysis of protein expression in yeast. Nature 425:737–741

    CAS  Article  Google Scholar 

  • Giglia-Mari G, Zotter A, Vermeulen W (2011) DNA damage response. Cold Spring Harb Perspect Biol 3:a000745

    Article  Google Scholar 

  • Görner W et al (1998) Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev 12:586–597

    Article  Google Scholar 

  • Hao N, O’Shea EK (2012) Signal-dependent dynamics of transcription factor translocation controls gene expression. Nat Struct Mol Biol 19:31–40

    CAS  Article  Google Scholar 

  • Hayashi-Takanaka Y et al (2011) Tracking epigenetic histone modifications in single cells using Fab-based live endogenous modification labeling. Nucleic Acids Res 39:6475–6488

    CAS  Article  Google Scholar 

  • Hayden MS, West AP, Ghosh S (2006) NF-κB and the immune response. Oncogene 25:6758–6780

    CAS  Article  Google Scholar 

  • Hughey JJ, Gutschow MV, Bajar BT, Covert MW (2015) Single-cell variation leads to population invariance in NF-κB signaling dynamics. Mol Biol Cell 26:583–590

    Article  Google Scholar 

  • Jacquet M, Renault G, Lallet S, De Mey J, Goldbeter A (2003) Oscillatory nucleocytoplasmic shuttling of the general stress response transcriptional activators Msn2 and Msn4 in Saccharomyces cerevisiae. J Cell Biol 161:497–505

    CAS  Article  Google Scholar 

  • Kaufmann BB, Yang Q, Mettetal JT, Van Oudenaarden A (2007) Heritable stochastic switching revealed by single-cell genealogy. PLoS Biol 5:1973–1980

    CAS  Article  Google Scholar 

  • Leung AKL, Sharp PA (2010) MicroRNA functions in stress responses. Mol Cell 40:205–215

    CAS  Article  Google Scholar 

  • Lev Bar-Or R et al (2000) Generation of oscillations by the p53-Mdm2 feedback loop: a theoretical and experimental study. Proc Natl Acad Sci USA 97:11250–11255

    Article  Google Scholar 

  • Lindner AB, Madden R, Demarez A, Stewart EJ, Taddei F (2008) Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation. Proc Natl Acad Sci USA 105: 3076–3081

    Article  Google Scholar 

  • Liu F et al (2011) JAK2V617F-mediated phosphorylation of PRMT5 downregulates its methyltransferase activity and promotes myeloproliferation. Cancer Cell 19:283–294

    CAS  Article  Google Scholar 

  • Liu Y et al (2012) Akt phosphorylates the transcriptional repressor Bmi1 to Block its effects on the tumor-suppressing Ink4a-Arf locus. Sci Signal 5:ra77-ra77

    Google Scholar 

  • Liu F, Wang L, Perna F, Nimer SD (2016) Beyond transcription factors: How oncogenic signalling reshapes the epigenetic landscape. Nat Rev Cancer 16:359–372

    CAS  Article  Google Scholar 

  • Lungu C, Pinter S, Broche J, Rathert P, Jeltsch A (2017) Modular fluorescence complementation sensors for live cell detection of epigenetic signals at endogenous genomic sites. Nat Commun 8:649

    Article  Google Scholar 

  • Mendez MG, Janmey PA (2012) Transcription factor regulation by mechanical stress. Int J Biochem Cell Biol 44:728–732

    CAS  Article  Google Scholar 

  • Milisav I (2011) Cellular stress responses. Adv Regen Med. https://doi.org/10.1016/j.molcel.2010.09.022

    Article  Google Scholar 

  • Nelson DE (2004) Oscillations in NF- B signaling control the dynamics of gene expression. Science 306:704–708

    CAS  Article  Google Scholar 

  • Nikolaev VO, Bünemann M, Hein L, Hannawacker A, Lohse MJ (2004) Novel single chain cAMP sensors for receptor-induced signal propagation. J Biol Chem 279:37215–37218

    CAS  Article  Google Scholar 

  • Pavet V, Quintero C, Cecchini NM, Rosa AL, Alvarez ME (2006) Arabidopsis displays centromeric DNA hypomethylation and cytological alterations of heterochromatin upon attack by Pseudomonas syringae. Mol Plant Microbe Interact 19:577–587

    CAS  Article  Google Scholar 

  • Pecinka A et al (2010) Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis. Plant Cell 22:3118–3129

    CAS  Article  Google Scholar 

  • Raj B et al (2018) Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain. Nat Biotechnol 36:442–450

    CAS  Article  Google Scholar 

  • Rodgers AB, Morgan CP, Bronson SL, Revello S, Bale TL (2013) Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J Neurosci 33:9003–9012

    CAS  Article  Google Scholar 

  • Rodgers AB, Morgan CP, Leu NA, Bale TL (2015) Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc Natl Acad Sci USA 112:13699–13704

    Article  Google Scholar 

  • Rossetto D, Avvakumov N, Côté J (2012) Histone phosphorylation: a chromatin modification involved in diverse nuclear events. Epigenetics 7:1098–1108

    CAS  Article  Google Scholar 

  • Sasaki K, Ito T, Nishino N, Khochbin S, Yoshida M (2009) Real-time imaging of histone H4 hyperacetylation in living cells. Proc Natl Acad Sci USA 106: 16257–16262

    Google Scholar 

  • Schmitt AP, McEntee K (1996) Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93:5777–5782

    Article  Google Scholar 

  • Soontorngun N (2017) Reprogramming of nonfermentative metabolism by stress-responsive transcription factors in the yeast Saccharomyces cerevisiae. Curr Genet 63:1–7

    CAS  Article  Google Scholar 

  • Tsang CK, Li H, Zheng XS (2007) Nutrient starvation promotes condensin loading to maintain rDNA stability. EMBO J 26:448–458

    CAS  Article  Google Scholar 

  • Vedel S, Nunns H, Košmrlj A, Semsey S, Trusina A (2016) Asymmetric damage segregation constitutes an emergent population-level stress response. Cell Syst 3:187–198

    CAS  Article  Google Scholar 

  • Wang Y, Maharana S, Wang MD, Shivashankar GV (2014) Super-resolution microscopy reveals decondensed chromatin structure at transcription sites. Sci Rep 4:4477

    Article  Google Scholar 

  • Winkler J et al (2010) Quantitative and spatio-temporal features of protein aggregation in Escherichia coli and consequences on protein quality control and cellular ageing. EMBO J 29:910–923

    CAS  Article  Google Scholar 

  • Woodford N, Ellington MJ (2007) The emergence of antibiotic resistance by mutation. Clin Microbiol Infect 13:5–18

    CAS  Article  Google Scholar 

  • Zhang N, Cao L (2017) Starvation signals in yeast are integrated to coordinate metabolic reprogramming and stress response to ensure longevity. Curr Genet 63:839–843

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Lolahon Kadiri and Jessica Ye for critical reading of the manuscript. MA acknowledges funding from the National Institutes of Health (1DP2AG050461-01 and 1U54CA209992-01).

Author information

Authors and Affiliations

Authors

Contributions

YX and MA designed the manuscript. YX drafted the manuscript. MA edited and revised the drafted manuscript. YX and MA read, discussed, and approved the manuscript.

Corresponding author

Correspondence to Murat Acar.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xue, Y., Acar, M. Mechanisms for the epigenetic inheritance of stress response in single cells. Curr Genet 64, 1221–1228 (2018). https://doi.org/10.1007/s00294-018-0849-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-018-0849-1

Keywords

  • Stress response
  • Msn2
  • Epigenetic inheritance
  • Single cells
  • Yeast
  • Mammalian cells