Skip to main content
Log in

Genetic background effects in quantitative genetics: gene-by-system interactions

  • Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Proper cell function depends on networks of proteins that interact physically and functionally to carry out physiological processes. Thus, it seems logical that the impact of sequence variation in one protein could be significantly influenced by genetic variants at other loci in a genome. Nonetheless, the importance of such genetic interactions, known as epistasis, in explaining phenotypic variation remains a matter of debate in genetics. Recent work from our lab revealed that genes implicated from an association study of toxin tolerance in Saccharomyces cerevisiae show extensive interactions with the genetic background: most implicated genes, regardless of allele, are important for toxin tolerance in only one of two tested strains. The prevalence of background effects in our study adds to other reports of widespread genetic-background interactions in model organisms. We suggest that these effects represent many-way interactions with myriad features of the cellular system that vary across classes of individuals. Such gene-by-system interactions may influence diverse traits and require new modeling approaches to accurately represent genotype–phenotype relationships across individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Berry DB, Guan Q, Hose J, Haroon S, Gebbia M, Heisler LE, Nislow C, Giaever G, Gasch AP (2011) Multiple means to the same end: the genetic basis of acquired stress resistance in yeast. PLoS Genet 7(11):e1002353

    Article  CAS  Google Scholar 

  • Bloom JS, Kotenko I, Sadhu MJ, Treusch S, Albert FW, Kruglyak L (2015) Genetic interactions contribute less than additive effects to quantitative trait variation in yeast. Nat Commun 6:8712

    Article  CAS  Google Scholar 

  • Boyle EA, Li YI, Pritchard JK (2017) An expanded view of complex traits: from polygenic to omnigenic Cell 169(7):1177–1186

    Article  CAS  Google Scholar 

  • Butland G, Babu M, Diaz-Mejia JJ, Bohdana F, Phanse S, Gold B, Yang W, Li J, Gagarinova AG, Pogoutse O, Mori H, Wanner BL, Lo H, Wasniewski J, Christopolous C, Ali M, Venn P, Safavi-Naini A, Sourour N, Caron S, Choi JY, Laigle L, Nazarians-Armavil A, Deshpande A, Joe S, Datsenko KA, Yamamoto N, Andrews BJ, Boone C, Ding H, Sheikh B, Moreno-Hagelseib G, Greenblatt JF, Emili A (2008) eSGA: E. coli synthetic genetic array analysis. Nat Methods 5(9):789–795

    Article  CAS  Google Scholar 

  • Byrne AB, Weirauch MT, Wong V, Koeva M, Dixon SJ, Stuart JM, Roy PJ (2007) A global analysis of genetic interactions in Caenorhabditis elegans. J Biol 6(3):8

    Article  Google Scholar 

  • Civelek M, Lusis AJ (2014) Systems genetics approaches to understand complex traits. Nat Rev Genet 15(1):34–48

    Article  CAS  Google Scholar 

  • Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh JL, Toufighi K, Mostafavi S, Prinz J, St Onge RP, VanderSluis B, Makhnevych T, Vizeacoumar FJ, Alizadeh S, Bahr S, Brost RL, Chen Y, Cokol M, Deshpande R, Li Z, Lin ZY, Liang W, Marback M, Paw J, San Luis BJ, Shuteriqi E, Tong AH, van Dyk N, Wallace IM, Whitney JA, Weirauch MT, Zhong G, Zhu H, Houry WA, Brudno M, Ragibizadeh S, Papp B, Pal C, Roth FP, Giaever G, Nislow C, Troyanskaya OG, Bussey H, Bader GD, Gingras AC, Morris QD, Kim PM, Kaiser CA, Myers CL, Andrews BJ, Boone C (2010). The genetic landscape of a cell. Science. 327(5964):425–431

    Article  CAS  Google Scholar 

  • Ehrenreich IM (2017) Epistasis: searching for interacting genetic variants using crosses. Genetics 206(2):531–535

    Article  Google Scholar 

  • Finley D, Bartel B, Varshavsky A (1989) The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature 338(6214):394–401

    Article  CAS  Google Scholar 

  • Greene CS, Penrod NM, Williams SM, Moore JH (2009) Failure to replicate a genetic association may provide important clues about genetic architecture. PLoS One 4(6):e5639

    Article  Google Scholar 

  • Hill WG, Goddard ME, Visscher PM (2008) Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet 4(2):e1000008

    Article  Google Scholar 

  • Horn T, Sandmann T, Fischer B, Axelsson E, Huber W, Boutros M (2011) Mapping of signaling networks through synthetic genetic interaction analysis by RNAi. Nat Methods 8(4):341–346

    Article  CAS  Google Scholar 

  • Hou J, Schacherer J (2016) Negative epistasis: a route to intraspecific reproductive isolation in yeast? Curr Genet 62(1):25–29

    Article  CAS  Google Scholar 

  • Huang W, Mackay TF (2016) The genetic architecture of quantitative traits cannot be inferred from variance component analysis. PLoS Genet 12(11):e1006421

    Article  Google Scholar 

  • Huang W, Richards S, Carbone MA, Zhu D, Anholt RR, Ayroles JF, Duncan L, Jordan KW, Lawrence F, Magwire MM, Warner CB, Blankenburg K, Han Y, Javaid M, Jayaseelan J, Jhangiani SN, Muzny D, Ongeri F, Perales L, Wu YQ, Zhang Y, Zou X, Stone EA, Gibbs RA, Mackay TF (2012) Epistasis dominates the genetic architecture of Drosophila quantitative traits. Proc Natl Acad Sci USA 109(39):15553–15559

    Article  CAS  Google Scholar 

  • Lehner B, Crombie C, Tischler J, Fortunato A, Fraser AG (2006) Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nat Genet 38(8):896–903

    Article  CAS  Google Scholar 

  • Leiserson MD, Eldridge JV, Ramachandran S, Raphael BJ (2013). Network analysis of GWAS data. Curr Opin Genet Dev 23(6):602–610

    Article  CAS  Google Scholar 

  • Mackay TF (2014) Epistasis and quantitative traits: using model organisms to study gene–gene interactions. Nat Rev Genet 15(1):22–33

    Article  CAS  Google Scholar 

  • Malmberg RL, Held S, Waits A, Mauricio R (2005) Epistasis for fitness-related quantitative traits in Arabidopsis thaliana grown in the field and in the greenhouse. Genetics 171(4):2013–2027

    Article  CAS  Google Scholar 

  • Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TF, McCarroll SA, Visscher PM (2009) Finding the missing heritability of complex diseases. Nature 461(7265):747–753

    Article  CAS  Google Scholar 

  • Monnahan PJ, Kelly JK (2015) epistasis is a major determinant of the additive genetic variance in Mimulus guttatus. PLoS Genet 11(5):e1005201

    Article  Google Scholar 

  • Moore JH, Williams SM (2009) Epistasis and its implications for personal genetics. Am J Hum Genet 85(3):309–320

    Article  CAS  Google Scholar 

  • Rand DM (2017) Fishing for adaptive epistasis using mitonuclear interactions. PLoS Genet 13(3):e1006662

    Article  Google Scholar 

  • Roguev A, Wiren M, Weissman JS, Krogan NJ (2007) High-throughput genetic interaction mapping in the fission yeast Schizosaccharomyces pombe. Nat Methods 4(10):861–866

    Article  CAS  Google Scholar 

  • Sackton TB, Hartl DL (2016) Genotypic context and epistasis in individuals and populations. Cell 166(2):279–287

    Article  CAS  Google Scholar 

  • Sardi M, Gasch AP (2017). Incorporating comparative genomics into the design-test-learn cycle of microbial strain engineering. FEMS Yeast Res 17(5):1–10

    Article  Google Scholar 

  • Sardi M, Rovinskiy N, Zhang Y, Gasch AP (2016) Leveraging genetic-background effects in Saccharomyces cerevisiae to improve lignocellulosic hydrolysate tolerance. Appl Environ Microbiol 82(19):5838–5849

    Article  CAS  Google Scholar 

  • Sardi M, Paithane V, Place M, Robinson E, Hose J, Wohlbach DJ, Gasch AP (2018) Genome-wide association across Saccharomyces cerevisiae strains reveals substantial variation in underlying gene requirements for toxin tolerance. PLoS Genet 14(2):e1007217

    Article  Google Scholar 

  • Shao H, Burrage LC, Sinasac DS, Hill AE, Ernest SR, O’Brien W, Courtland HW, Jepsen KJ, Kirby A, Kulbokas EJ, Daly MJ, Broman KW, Lander ES, Nadeau JH (2008) Genetic architecture of complex traits: large phenotypic effects and pervasive epistasis. Proc Natl Acad Sci USA 105(50):19910–19914

    Article  CAS  Google Scholar 

  • Snoek T, Verstrepen KJ, Voordeckers K (2016) How do yeast cells become tolerant to high ethanol concentrations? Curr Genet 62(3):475–480

    Article  CAS  Google Scholar 

  • Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, Page N, Robinson M, Raghibizadeh S, Hogue CW, Bussey H, Andrews B, Tyers M, Boone C (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294(5550):2364–2368

    Article  CAS  Google Scholar 

  • Typas A, Nichols RJ, Siegele DA, Shales M, Collins SR, Lim B, Braberg H, Yamamoto N, Takeuchi R, Wanner BL, Mori H, Weissman JS, Krogan NJ, Gross CA (2008) High-throughput, quantitative analyses of genetic interactions in E. coli. Nat Methods 5(9):781–787

    Article  CAS  Google Scholar 

  • Watari J, Kudo M, Nishikwa N, Kamimura M (1990) Construction of flocculent yeast cells (Saccharomyces cerevisiae) by mating or protoplast fusion using a yeast cell containing the flocculation gene FL05. Agric Biol Chem 54(7):1677–1681

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Bret Payseur for useful comments on the manuscript. This work was supported by a grant from the Department of Energy to the Great Lakes Bioenergy Research Center (DE-SC0018409).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Audrey P. Gasch.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sardi, M., Gasch, A.P. Genetic background effects in quantitative genetics: gene-by-system interactions. Curr Genet 64, 1173–1176 (2018). https://doi.org/10.1007/s00294-018-0835-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-018-0835-7

Keywords

Navigation