Advertisement

Current Genetics

, Volume 64, Issue 5, pp 1037–1041 | Cite as

Septin localization and function during autophagy

  • Gaurav Barve
  • Priyadarshini Sanyal
  • Ravi Manjithaya
Review

Abstract

Autophagy is a vital conserved recycling process where eukaryotic cells remove unwanted proteins and organelles via lysosomal degradation and in turn, generate nutrients for the cells. The special feature of autophagy process is the formation of double-membrane vesicles called autophagosomes that engulf cellular cargo and deliver them to the vacuole or lysosomes for degradation. Inspite of more than 40 AuTophaGy (ATG) proteins and several organelles as known membrane source, autophagosome biogenesis is not entirely understood. We recently have discovered that septins contribute to autophagosome biogenesis. Septins are GTP-binding proteins, usually localized at the bud neck region and are involved in cytokinesis. Here, we show that during autophagy prevalent conditions, septins traffic between different cellular compartments such as Golgi, mitochondria, endosomes, plasma membrane, and vacuolar membranes.

Keywords

Autophagy Septins PAS Autophagosome Atg9 trafficking Non-canonical rings 

Notes

Acknowledgements

We would like to thank Prof. Yoshinori Ohsumi, Tokyo Institute of Technology, Tokyo, for generously sharing 2xmCherry-Atg8 plasmid, Prof. Subba Rao, IISc, Bangalore, India, for the Golgi marker plasmid RFP-Imh1p-GRIP-pGS396 and Prof. Kausik Chakraborty, IGIB, India, for sharing Septin-GFP strains. This work was supported by Wellcome Trust/DBT India Alliance Intermediate Fellowship (509159-Z-09-Z) and JNCASR intramural funds to RM.

Author contributions

GB and PS have performed the experiments. GB and RM wrote the manuscript.

Supplementary material

294_2018_834_MOESM1_ESM.mov (124 kb)
Movie 1: Cdc11-GFP cells were grown in YPD until it reaches to 0.6 to 0.8 OD600 and the SD-N medium was added (1OD600/ml). After 2h incubation in starvation medium cells were centrifuged at 20817g for 2 min and were mounted on agarose pads (made in SD-N medium). Time-lapse was carried out for 50 seconds with an interval of 10 seconds at RT. Scale bar 1µm (MOV 123 KB)
294_2018_834_MOESM2_ESM.avi (333 kb)
Movie 2 Cdc11-GFP cells were grown as mentioned in Fig 1. Cells were centrifuged at 20817g for 2 min and were mounted on agarose pads (made in SD-N medium). Time-lapse was carried out at a single Z plane for 300 seconds with an interval of 10 seconds at RT. Here first 150 seconds are shown. Arrows indicate Cdc11-GFP and FM4-64 stained endosomes simultaneously emerging from the plasma membrane. Scale bar 1µm (AVI 333 KB)

References

  1. An Z, Tassa A, Thomas C, Zhong R, Xiao G, Fotedar R, Tu BP, Klionsky DJ, Levine B (2014) Autophagy is required for G(1)/G(0) quiescence in response to nitrogen starvation in Saccharomyces cerevisiae. Autophagy 10:1702–1711.  https://doi.org/10.4161/auto.32122 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Au Yong JY, Wang YM, Wang Y (2016) The Nim1 kinase Gin4 has distinct domains crucial for septin assembly, phospholipid binding and mitotic exit. J Cell Sci 129:2744–2756.  https://doi.org/10.1242/jcs.183160 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barral Y, Mermall V, Mooseker MS, Snyder M (2000) Compartmentalization of the cell cortex by septins is required for maintenance of cell polarity in yeast. Mol Cell 5:841–851CrossRefPubMedCentralGoogle Scholar
  4. Barve G, Sridhar S, Aher A, Sahani MH, Chinchwadkar S, Singh S, K NL, McMurray MA, Manjithaya R (2018) Septins are involved at the early stages of macroautophagy in S. cerevisiae. J Cell Sci 13110.1242/jcs.209098Google Scholar
  5. Bridges AA, Jentzsch MS, Oakes PW, Occhipinti P, Gladfelter AS (2016) Micron-scale plasma membrane curvature is recognized by the septin cytoskeleton. J Cell Biol 213:23–32.  https://doi.org/10.1083/jcb.201512029 CrossRefPubMedPubMedCentralGoogle Scholar
  6. De Virgilio C, DeMarini DJ, Pringle JR (1996) SPR28, a sixth member of the septin gene family in Saccharomyces cerevisiae that is expressed specifically in sporulating cells. Microbiology 142(Pt 10):2897–2905.  https://doi.org/10.1099/13500872-142-10-2897 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dobbelaere J, Barral Y (2004) Spatial coordination of cytokinetic events by compartmentalization of the cell cortex. Science 305:393–396.  https://doi.org/10.1126/science.1099892 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Feng Y, He D, Yao Z, Klionsky DJ (2014) The machinery of macroautophagy. Cell Res 24:24–41.  https://doi.org/10.1038/cr.2013.168 CrossRefGoogle Scholar
  9. Garcia G, Finnigan GC, Heasley LR, Sterling SM, Aggarwal A, Pearson CG, Nogales E, McMurray MA, Thorner J (2016) Assembly, molecular organization, and membrane-binding properties of development-specific septins. J Cell Biol 212:515–529.  https://doi.org/10.1083/jcb.201511029 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Glomb O, Gronemeyer T (2016) Septin organization and functions in budding yeast. Front Cell Dev Biol 410.3389/fcell.2016.00123Google Scholar
  11. Imai K, Hao F, Fujita N, Tsuji Y, Oe Y, Araki Y, Hamasaki M, Noda T, Yoshimori T (2016) Atg9A trafficking through the recycling endosomes is required for autophagosome formation. J Cell Sci 129:3781–3791.  https://doi.org/10.1242/jcs.196196 CrossRefPubMedGoogle Scholar
  12. Johnson ES, Gupta AA (2001) An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 106:735–744CrossRefPubMedCentralGoogle Scholar
  13. Kabeya Y, Kamada Y, Baba M, Takikawa H, Sasaki M, Ohsumi Y (2005) Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Mol Biol Cell 16:2544–2553.  https://doi.org/10.1091/mbc.E04-08-0669 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kadota J, Yamamoto T, Yoshiuchi S, Bi E, Tanaka K (2004) Septin ring assembly requires concerted action of polarisome components, a PAK kinase Cla4p, and the actin cytoskeleton in Saccharomyces cerevisiae. Mol Biol Cell 15:5329–5345.  https://doi.org/10.1091/mbc.E04-03-0254 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y (2000) Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 150:1507–1513CrossRefPubMedCentralGoogle Scholar
  16. Kang H, Lew DJ (2017) How do cells know what shape they are? Curr Genet 63:75–77.  https://doi.org/10.1007/s00294-016-0623-1 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Legakis JE, Yen WL, Klionsky DJ (2007) A cycling protein complex required for selective autophagy. Autophagy 3:422–432CrossRefPubMedCentralGoogle Scholar
  18. Longatti A, Tooze SA (2012) Recycling endosomes contribute to autophagosome formation. Autophagy 8:1682–1683.  https://doi.org/10.4161/auto.21486 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Longtine MS, Fares H, Pringle JR (1998) Role of the yeast Gin4p protein kinase in septin assembly and the relationship between septin assembly and septin function. J Cell Biol 143:719–736CrossRefPubMedCentralGoogle Scholar
  20. Mari M, Griffith J, Rieter E, Krishnappa L, Klionsky DJ, Reggiori F (2010) An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J Cell Biol 190:1005–1022.  https://doi.org/10.1083/jcb.200912089 CrossRefPubMedPubMedCentralGoogle Scholar
  21. McMurray MA, Thorner J (2008) Septin stability and recycling during dynamic structural transitions in cell division and development. Curr Biol 18:1203–1208.  https://doi.org/10.1016/j.cub.2008.07.020 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Mitchell L, Lau A, Lambert JP, Zhou H, Fong Y, Couture JF, Figeys D, Baetz K (2011) Regulation of septin dynamics by the Saccharomyces cerevisiae lysine acetyltransferase NuA4. PLoS One 6:e25336.  https://doi.org/10.1371/journal.pone.0025336 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132.  https://doi.org/10.1146/annurev-cellbio-092910-154005 CrossRefGoogle Scholar
  24. Oh Y, Bi E (2011) Septin structure and function in yeast and beyond. Trends Cell Biol 21:141–148.  https://doi.org/10.1016/j.tcb.2010.11.006 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Okada S, Leda M, Hanna J, Savage NS, Bi E, Goryachev AB (2013) Daughter cell identity emerges from the interplay of Cdc42, septins, and exocytosis. Dev Cell 26:148–161.  https://doi.org/10.1016/j.devcel.2013.06.015 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Orsi A, Razi M, Dooley HC, Robinson D, Weston AE, Collinson LM, Tooze SA (2012) Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Mol Biol Cell 23:1860–1873.  https://doi.org/10.1091/mbc.E11-09-0746 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ozsarac N, Bhattacharyya M, Dawes IW, Clancy MJ (1995) The SPR3 gene encodes a sporulation-specific homologue of the yeast CDC3/10/11/12 family of bud neck microfilaments and is regulated by ABFI. Gene 164:157–162CrossRefPubMedCentralGoogle Scholar
  28. Papinski D, Kraft C (2014) Atg1 kinase organizes autophagosome formation by phosphorylating Atg9. Autophagy 10:1338–1340.  https://doi.org/10.4161/auto.28971 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Puri C, Renna M, Bento CF, Moreau K, Rubinsztein DC (2014) ATG16L1 meets ATG9 in recycling endosomes: additional roles for the plasma membrane and endocytosis in autophagosome biogenesis. Autophagy 10:182–184.  https://doi.org/10.4161/auto.27174 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Ravikumar B, Moreau K, Jahreiss L, Puri C, Rubinsztein DC (2010) Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol 12:747–757.  https://doi.org/10.1038/ncb2078 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Reggiori F, Tucker KA, Stromhaug PE, Klionsky DJ (2004) The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev Cell 6:79–90CrossRefPubMedCentralGoogle Scholar
  32. Reggiori F, Shintani T, Nair U, Klionsky DJ (2005) Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts. Autophagy 1:101–109CrossRefPubMedCentralGoogle Scholar
  33. Sekito T, Kawamata T, Ichikawa R, Suzuki K, Ohsumi Y (2009) Atg17 recruits Atg9 to organize the pre-autophagosomal structure. Genes Cells 14:525–538.  https://doi.org/10.1111/j.1365-2443.2009.01299.x CrossRefPubMedPubMedCentralGoogle Scholar
  34. Setty SR, Shin ME, Yoshino A, Marks MS, Burd CG (2003) Golgi recruitment of GRIP domain proteins by Arf-like GTPase 1 is regulated by Arf-like GTPase 3. Curr Biol 13:401–404CrossRefGoogle Scholar
  35. Song K, Russo G, Krauss M (2016) Septins As Modulators of Endo-Lysosomal Membrane Traffic. Front Cell Dev Biol 4:124.  https://doi.org/10.3389/fcell.2016.00124 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y (2001) The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J 20:5971–5981.  https://doi.org/10.1093/emboj/20.21.5971 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Takahashi Y, Iwase M, Konishi M, Tanaka M, Toh-e A, Kikuchi Y (1999) Smt3, a SUMO-1 homolog, is conjugated to Cdc3, a component of septin rings at the mother-bud neck in budding yeast. Biochem Biophys Res Commun 259:582–587.  https://doi.org/10.1006/bbrc.1999.0821 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Tang CS, Reed SI (2002) Phosphorylation of the septin cdc3 in g1 by the cdc28 kinase is essential for efficient septin ring disassembly. Cell Cycle 1:42–49PubMedPubMedCentralGoogle Scholar
  39. Tucker KA, Reggiori F, Dunn WA Jr, Klionsky DJ (2003) Atg23 is essential for the cytoplasm to vacuole targeting pathway and efficient autophagy but not pexophagy. J Biol Chem 278:48445–48452.  https://doi.org/10.1074/jbc.M309238200 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Versele M, Thorner J (2004) Septin collar formation in budding yeast requires GTP binding and direct phosphorylation by the PAK, Cla4. J Cell Biol 164:701–715.  https://doi.org/10.1083/jcb.200312070 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Zander S, Baumann S, Weidtkamp-Peters S, Feldbrugge M (2016) Endosomal assembly and transport of heteromeric septin complexes promote septin cytoskeleton formation. J Cell Sci 129:2778–2792.  https://doi.org/10.1242/jcs.182824 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Gaurav Barve
    • 1
  • Priyadarshini Sanyal
    • 1
  • Ravi Manjithaya
    • 1
  1. 1.Molecular Biology and Genetics UnitJawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia

Personalised recommendations