Advertisement

Current Genetics

, Volume 64, Issue 5, pp 1141–1152 | Cite as

An interplay between Shugoshin and Spo13 for centromeric cohesin protection and sister kinetochore mono-orientation during meiosis I in Saccharomyces cerevisiae

  • Gunjan Mehta
  • Guhan Kaliyaperumal Anbalagan
  • Akhilendra Pratap Bharati
  • Purna Gadre
  • Santanu Kumar Ghosh
Original Article

Abstract

Meiosis is a specialized cell division process by which haploid gametes are produced from a diploid mother cell. Reductional chromosome segregation during meiosis I (MI) is achieved by two unique and conserved events: centromeric cohesin protection (CCP) and sister kinetochore mono-orientation (SKM). In Saccharomyces cerevisiae, a meiosis-specific protein Spo13 plays a role in both these centromere-specific events. Despite genome-wide association of Spo13, we failed to detect its function in global processes such as cohesin loading, cohesion establishment and homologs pairing. While Shugoshin (Sgo1) and protein phosphatase 2A (PP2ARts1) play a central role in CCP, it is not fully understood whether Spo13 functions in the process through a Sgo1- PP2ARts1-dependent or -independent mechanism. To delineate this and to find the relative contribution of each of these proteins in CCP and SKM, we meticulously observed the sister chromatid segregation pattern in the wild type, sgo1Δ, rts1Δ and spo13Δ single mutants and in their respective double mutants. We found that Spo13 protects centromeric cohesin through a Sgo1– PP2ARts1-independent mechanism. To our surprise, we observed a hitherto unknown role of Sgo1 in SKM. Further investigation revealed that Sgo1-mediated recruitment of aurora kinase Ipl1 to the centromere facilitates monopolin loading at the kinetochore during MI. Hence, this study uncovers the role of Sgo1 in SKM and demonstartes how the regulators (Sgo1, PP2ARts1, Spo13) work in a coordinated manner to achieve faithful chromosome segregation during meiosis, the failure of which leads to aneuploidy and birth defects.

Keywords

Spo13 Meiosis Cohesin Saccharomyces cerevisiae Sgo1 Mono-orientation 

Notes

Acknowledgements

SKG lab is supported by the Department of Biotechnology, the Department of Science and Technology and the Board of Research in Nuclear Sciences of Govt. of India (Grant Nos. BT/PR13962/BRB/10/798/2010, SR/SO/BB-57/2009 and 37(1)/14/30/2015/BRNS, respectively). GM was supported by a CSIR fellowship (20 − 6/2009(i)EU-IV/329667). GKA was supported by a DST Inspire fellowship (DST/INSPIRE Fellowship/2015/IF150117). APB was supported by SERB-national postdoctoral fellowship (DST No: PDF/2016/000937). We would like to thank Khushboo Sinha for the strain construction.

Supplementary material

294_2018_832_MOESM1_ESM.eps (410 kb)
Supplementary material 1 (EPS 409 KB)
294_2018_832_MOESM2_ESM.docx (17 kb)
Supplementary material 2 (DOCX 16 KB)

References

  1. Agarwal M, Mehta G, Ghosh SK (2015) Role of Ctf3 and COMA subcomplexes in meiosis: implication in maintaining Cse4 at the centromere and numeric spindle poles. Biochim Biophys Acta 1853:671–684.  https://doi.org/10.1016/j.bbamcr.2014.12.032 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Attner MA, Miller MP, Ee LS, Elkin SK, Amon A (2013) Polo kinase Cdc5 is a central regulator of meiosis I. Proc Natl Acad Sci USA 110:14278–14283.  https://doi.org/10.1073/pnas.1311845110 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bhalla N, Dernberg AF (2008) Prelude to a division. Annu Rec Cell Dev Biol 24:397–424.  https://doi.org/10.1146/annurev.cellbio.23.090506.123245 CrossRefGoogle Scholar
  4. Brar GA, Kiburz BM, Zhang Y, Kim JE, White F, Amon A (2006) Rec8 phosphorylation and recombination promote the step-wise loss of cohesins in meiosis. Nature 441:532–536.  https://doi.org/10.1038/nature04794 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Carlile TM, Amon A (2008) Meiosis I is established through division-specific translational control of a cyclin Cell 133:280–291.  https://doi.org/10.1016/j.cell.2008.02.032 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chelysheva L et al (2005) AtREC8 and AtSCC3 are essential to the monopolar orientation of the kinetochores during meiosis. J Cell Sci 118:4621–4632.  https://doi.org/10.1242/jcs.02583 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Clyne RK, Katis VL, Jessop L, Benjamin KR, Herskowitz I, Lichten M, Nasmyth K (2003) Polo-like kinase Cdc5 promotes chiasmata formation and cosegregation of sister centromeres at meiosis I. Nat Cell Biol 5:480–485.  https://doi.org/10.1038/ncb977 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Corbett KD, Harrison SC (2012) Molecular architecture of the yeast monopolin complex. Cell Rep 1:583–589.  https://doi.org/10.1016/j.celrep.2012.05.012 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Ding DQ, Haraguchi T, Hiraoka Y (2016) A cohesin-based structural platform supporting homologous chromosome pairing in meiosis. Curr Genet 62:499–502.  https://doi.org/10.1007/s00294-016-0570-x CrossRefPubMedPubMedCentralGoogle Scholar
  10. George AA, Waleorth NC (2016) Microtubule dynamics decoded by the epigenetic state of centromeric chromatin. Curr Genet 62:691–695.  https://doi.org/10.1007/s00294-016-0588-0 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Hauf S, Watanabe Y (2004) Kinetochore orientation in mitosis and meiosis Cell 119:317–327.  https://doi.org/10.1016/j.cell.2004.10.014 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hauf S, Biswas A, Langegger M, Kawashima SA, Tsukahara T, Watanabe Y (2007) Aurora controls sister kinetochore mono-orientation and homolog bi-orientation in meiosis-I. EMBO J 26:4475–4486.  https://doi.org/10.1038/sj.emboj.7601880 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Iacovella MG, Daly CN, Kelly JS, Michielsen AJ, Clyne RK (2010) Analysis of Polo-like kinase Cdc5 in the meiosis recombination checkpoint Cell cycle (Georgetown. Tex) 9:1182–1193.  https://doi.org/10.4161/cc.9.6.11068 CrossRefGoogle Scholar
  14. Janke C et al (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins. more markers promoter substitution cassettes Yeast 21:947–962.  https://doi.org/10.1002/yea.1142 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Katis VL, Galova M, Rabitsch KP, Gregan J, Nasmyth K (2004a) Maintenance of cohesin at centromeres after meiosis I in budding yeast requires a kinetochore-associated protein related to MEI-S332. Curr Biol CB 14:560–572.  https://doi.org/10.1016/j.cub.2004.03.001 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Katis VL, Matos J, Mori S, Shirahige K, Zachariae W, Nasmyth K (2004b) Spo13 facilitates monopolin recruitment to kinetochores and regulates maintenance of centromeric cohesion during yeast meiosis. Curr Biol CB 14:2183–2196.  https://doi.org/10.1016/j.cub.2004.12.020 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Katis VL et al (2010) Rec8 phosphorylation by casein kinase 1 and Cdc7-Dbf4 kinase regulates cohesin cleavage by separase during meiosis. Dev cell 18:397–409.  https://doi.org/10.1016/j.devcel.2010.01.014 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kawashima SA, Tsukahara T, Langegger M, Hauf S, Kitajima TS, Watanabe Y (2007) Shugoshin enables tension-generating attachment of kinetochores by loading Aurora to centromeres. Genes Dev 21:420–435.  https://doi.org/10.1101/gad.1497307 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kawashima SA, Yamagishi Y, Honda T, Ishiguro K, Watanabe Y (2010) Phosphorylation of H2A by Bub1 prevents chromosomal instability through localizing shugoshin. Sci (New York NY) 327:172–177.  https://doi.org/10.1126/science.1180189 CrossRefGoogle Scholar
  20. Kiburz BM et al (2005) The core centromere and Sgo1 establish a 50-kb cohesin-protected domain around centromeres during meiosis. I. Genes Dev 19:3017–3030.  https://doi.org/10.1101/gad.1373005 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kim J et al (2015) Meikin is a conserved regulator of meiosis-I-specific kinetochore function. Nature 517:466–471.  https://doi.org/10.1038/nature14097 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kitajima TS, Kawashima SA, Watanabe Y (2004) The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature 427:510–517.  https://doi.org/10.1038/nature02312 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kitajima TS, Sakuno T, Ishiguro K, Iemura S, Natsume T, Kawashima SA, Watanabe Y (2006) Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature 441:46–52.  https://doi.org/10.1038/nature04663 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Klein F, Mahr P, Galova M, Buonomo SB, Michaelis C, Nairz K, Nasmyth K (1999) A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell 98:91–103.  https://doi.org/10.1016/s0092-8674(00)80609-1 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lee BH, Amon A, Prinz S (2002) Spo13 regulates cohesin cleavage. Genes Dev 16:1672–1681.  https://doi.org/10.1101/gad.989302 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lee BH, Kiburz BM, Amon A (2004) Spo13 maintains centromeric cohesion and kinetochore coorientation during meiosis I. Curr Biol CB 14:2168–2182.  https://doi.org/10.1016/j.cub.2004.12.033 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lengronne A et al (2004) Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 430:573–578.  https://doi.org/10.1038/nature02742 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lin SJ, O’Connell MJ (2017) DNA Topoisomerase II modulates acetyl-regulation of cohesin-mediated chromosome dynamics. Curr Genet 63:923–930.  https://doi.org/10.1007/s00294-017-0691-x CrossRefPubMedPubMedCentralGoogle Scholar
  29. Longtine MS et al. (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953–961. https://doi.org/10.1002/(sici)1097-0061(199807)14:10<953::aid-yea293>3.0.co;2-uCrossRefGoogle Scholar
  30. Marston AL, Tham WH, Shah H, Amon A (2004) A genome-wide screen identifies genes required for centromeric cohesion. Sci New York NY 303:1367–1370.  https://doi.org/10.1126/science.1094220 CrossRefGoogle Scholar
  31. Matos J et al (2008) Dbf4-dependent CDC7 kinase links DNA replication to the segregation of homologous chromosomes in meiosis. I Cell 135:662–678.  https://doi.org/10.1016/j.cell.2008.10.026 CrossRefPubMedPubMedCentralGoogle Scholar
  32. McGuinness BE et al (2009) Regulation of APC/C activity in oocytes by a Bub1-dependent spindle assembly checkpoint. Curr Biol CB 19:369–380.  https://doi.org/10.1016/j.cub.2009.01.064 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Mehta GD, Rizvi SM, Ghosh SK (2012) Cohesin: a guardian of genome integrity. Biochim Biophys Acta 1823:1324–1342.  https://doi.org/10.1016/j.bbamcr.2012.05.027 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Mehta GD, Agarwal M, Ghosh SK (2014) Functional characterization of kinetochore protein, Ctf19 in meiosis I: an implication of differential impact of Ctf19 on the assembly of mitotic and meiotic kinetochores in Saccharomyces cerevisiae. Mol Microbiol 91:1179–1199.  https://doi.org/10.1111/mmi.12527 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Meyer RE, Chuong HH, Hild M, Hansen CL, Kinter M, Dawson DS (2015) Ipl1/Aurora-B is necessary for kinetochore restructuring in meiosis I in Saccharomyces cerevisiae. Mol Biol Cell 26:2986–3000.  https://doi.org/10.1091/mbc.E15-01-0032 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Michaelis C, Ciosk R, Nasmyth K (1997) Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91:35–45CrossRefPubMedCentralGoogle Scholar
  37. Monje-Casas F, Prabhu VR, Lee BH, Boselli M, Amon A (2007) Kinetochore orientation during meiosis is controlled by Aurora B and the monopolin complex. Cell 128:477–490.  https://doi.org/10.1016/j.cell.2006.12.040 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ng TM, Waples WG, Lavoie BD, Biggins S (2009) Pericentromeric sister chromatid cohesion promotes kinetochore biorientation. Mol Biol Cell 20:3818–3827.  https://doi.org/10.1091/mbc.E09-04-0330 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Ng TM et al (2013) Kinetochore function and chromosome segregation rely on critical residues in histones H3 and H4 in budding yeast. Genetics 195:795–807.  https://doi.org/10.1534/genetics.113.152082 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Peplowska K, Wallek AU, Storchova Z (2014) Sgo1 regulates both condensin and Ipl1/Aurora B to promote chromosome biorientation. PLoS Gene 10:e1004411.  https://doi.org/10.1371/journal.pgen.1004411 CrossRefGoogle Scholar
  41. Pinsky BA, Biggins S (2005) The spindle checkpoint: tension versus attachment. Trends Cell Biol 15:486–493.  https://doi.org/10.1016/j.tcb.2005.07.005 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Rabitsch KP et al (2003) Kinetochore recruitment of two nucleolar proteins is required for homolog segregation in meiosis. I Dev Cell 4:535–548CrossRefPubMedCentralGoogle Scholar
  43. Riedel CG et al (2006) Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis. I Nature 441:53–61.  https://doi.org/10.1038/nature04664 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Shonn MA, McCarroll R, Murray AW (2002) Spo13 protects meiotic cohesin at centromeres in meiosis. I Gene Dev 16:1659–1671.  https://doi.org/10.1101/gad.975802 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Sourirajan A, Lichten M (2008) Polo-like kinase Cdc5 drives exit from pachytene during budding yeast meiosis. Gene Dev 22:2627–2632.  https://doi.org/10.1101/gad.1711408 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Sullivan M, Morgan DO (2007) A novel destruction sequence targets the meiotic regulator Spo13 for anaphase-promoting complex-dependent degradation in anaphase. I J Biol Chem 282:19710–19715.  https://doi.org/10.1074/jbc.M701507200 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Sym M, Roeder GS (1995) Zip1-induced changes in synaptonemal complex structure and polycomplex assembly. J Cell Biol 128:455–466CrossRefPubMedCentralGoogle Scholar
  48. Toth A, Ciosk R, Uhlmann F, Galova M, Schleiffer A, Nasmyth K (1999) Yeast cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during. DNA Replicat Gene Dev 13:320–333CrossRefPubMedCentralGoogle Scholar
  49. Toth A, Rabitsch KP, Galova M, Schleiffer A, Buonomo SB, Nasmyth K (2000) Functional genomics identifies monopolin: a kinetochore protein required for segregation of homologs during meiosis I Cell 103:1155–1168CrossRefPubMedCentralGoogle Scholar
  50. Vanoosthuyse V, Prykhozhij S, Hardwick KG (2007) Shugoshin 2 regulates localization of the chromosomal passenger proteins in fission yeast mitosis Mol Biol Cell 18:1657–1669.  https://doi.org/10.1091/mbc.E06-10-0890 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Watanabe Y (2005) Shugoshin: guardian spirit at the centromere. Curr Opinion Cell Biol 17:590–595.  https://doi.org/10.1016/j.ceb.2005.10.003 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Xu Z, Cetin B, Anger M, Cho US, Helmhart W, Nasmyth K, Xu W (2009) Structure and function of the PP2A-shugoshin interaction. Mol Cell 35:426–441.  https://doi.org/10.1016/j.molcel.2009.06.031 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Yokobayashi S, Watanabe Y (2005) The kinetochore protein Moa1 enables cohesion-mediated monopolar attachment at meiosis I. Cell 123:803–817.  https://doi.org/10.1016/j.cell.2005.09.013 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Yu HG, Koshland D (2007) The Aurora kinase Ipl1 maintains the centromeric localization of PP2A to protect cohesin during meiosis. J Cell Biol 176:911–918.  https://doi.org/10.1083/jcb.200609153 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Cancer InstituteNational Institutes of HealthBethesdaUSA
  2. 2.Department of Biosciences and BioengineeringIndian Institute of Technology, BombayMumbaiIndia
  3. 3.B231, Department of Biological SciencesTata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations