Abstract
Volatile organic compounds (VOCs) are small molecular mass substances, which exhibit low boiling points and high-vapour pressures. They are ubiquitous in nature and produced by almost any organism of all kingdoms of life. VOCs are involved in many inter- and intraspecies interactions ranging from antimicrobial or fungal effects to plant growth promotion and human taste perception of fermentation products. VOC profiles further reflect the metabolic or phenotypic state of the living organism that produces them. Hence, they can be exploited for non-invasive medicinal diagnoses or industrial fermentation control. Here, we introduce the reader to these diverse applications associated with the monitoring and analysis of VOC emissions. We also present our vision of real-time VOC analysis enabled by newly developed analytical techniques, which will further broaden the use of VOCs in even wider applications. Hence, we foresee a bright future for VOC research and its associated fields of applications.
This is a preview of subscription content, access via your institution.
References
Amann A, Costello Bde L, Miekisch W, Schubert J, Buszewski B, Pleil J, Ratcliffe N, Risby T (2014) The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J Breath Res 8(3):034001. https://doi.org/10.1088/1752-7155/8/3/034001
Aprotosoaie AC, Luca SV, Miron A (2016) Flavor chemistry of cocoa and cocoa products—an overview. Compr Rev Food Sci Food Saf 15:73–91
Araki T, Toh-e A, Kikuchi Y, Watanabe CK, Hachiya T, Noguchi K, Terashima I, Uesono Y (2015) Tetracaine, a local anesthetic, preferentially induces translational inhibition with processing body formation rather than phosphorylation of eIF2α in yeast. Curr Genet 61(1):43–53. https://doi.org/10.1007/s00294-014-0443-0
Arimura G, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabyashi J (2000) Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406:512–515
Arimura G, Ozawa T, Nishioka T, Boland W, Koch T, Kuhnemann F, Takabayashi J (2002) Herbivore-induced volatiles induce the emission of ethylene in neighboring lima bean plants. Plant J 29:87–98
Babikova Z, Johnson D, Bruce T, Pickett JA, Gilbert L (2013) How rapid is aphid-induced signal transfer between plants via common mycelial networks? Commun Integr Biol 6(6):e25904. https://doi.org/10.4161/cib.25904
Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA (2006) Volatile signaling in plant–plant interactions: “talking trees” in the genomics era. Science 311(5762):812–815
Barrios-Collado C, García-Gómez D, Zenobi R, Vidal-de-Miguel G, Ibáñez AJ, Martinez-Lozano Sinues (2016) Capturing in vivo plant metabolism by real-time analysis of low to high molecular weight volatiles. Anal Chem 88(4):2406–2412. https://doi.org/10.1021/acs.analchem.5b04452
Beauchamp J, Wisthaler A, Hansel A, Kleist E, Miebach M, Niinemets U, Schurr U, Wildt J (2005) Ozone induced emissions of biogenic VOC from tobacco: relationships between ozone uptake and emissions of LOX products. Plant Cell Environ 28:1334–1343
Bennett JW, Inamdar AA (2015) Are some fungal volatile organic compounds (VOCs) mycotoxins? Toxins (Basel) 7(9):3785–3804. https://doi.org/10.3390/toxins7093785
Berchtold C, Bosilkovska M, Daali Y, Walder B, Zenobi R (2014) Real-time monitoring of exhaled drugs by mass spectrometry. Mass Spectrom Rev 33(5):394–413. https://doi.org/10.1002/mas.21393
Bicchi C (2004) Special issue: analysis of flavors and fragrances. J Chromatogr Sci 42:401
Bicchi C, Cordero C, Iori C, Rubiolo P, Sandra P (2000) Headspace sorptive extraction (HSSE) in the headspace analysis of aromatic and medicinal plants. J High Res Chromatogr 23:539–546
Blake RS, Monks PS, Ellis AM (2009) Proton transfer reaction mass spectrometry. Chem Rev 109:861–896. https://doi.org/10.1021/cr800364q
Bonvehí JS (2005) Investigation of aromatic compounds in roasted cocoa powder. Eur Food Res Technol 221:19–29. https://doi.org/10.1007/s00217-005-1147-y
Bos LD, Sterk PJ, Schultz MJ (2013) Volatile metabolites of pathogens: a systematic review. PLoS Pathog 9(5):e1003311. https://doi.org/10.1371/journal.ppat.1003311
Buettner F, Jay K, Wischnewski H, Stadelmann T, Saad S, Jefimovs K, Mansurova M, Gerez J, Azzalin CM, Dechant R, Ibáñez AJ (2017) Non-targeted metabolomics approach reveals two distinct types of metabolomics response to telomerase dysfunction in S. cerevisiae. Metabolomics 13:53. https://doi.org/10.1007/s11306-017-1195-x
Clavijo McCormick A, Gershenzon J, Unsicker SB (2014) Little peaks with big effects: establishing the role of minor plant volatiles in plant-insect interactions. Plant Cell Environ 37(8):1836–1844. https://doi.org/10.1111/pce.12357
Considine PJ, Flynn N, Patching JW (1977) Ethylene production by soil microorganisms. Appl Environ Microbiol 33(4):977–979
Das MK, Bishwal SC, Das A, Dabral D, Varshney A, Badireddy VK, Nanda R (2014) Investigation of gender-specific exhaled breath volatome in humans by GCxGC–TOF–MS. Anal Chem 86(2):1229–1237. https://doi.org/10.1021/ac403541a
de Gouw J, Warneke C (2007) Measurements of volatile organic compounds in the earth’s atmosphere using proton-transfer-reaction mass spectrometry. Mass Spectrom Rev 26:223–257
de Moraes CM, Mescher MC, Tumlinson JH (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410(6828):577–580
Digiacomo F, Girelli G, Aor B, Marchioretti C, Pedrotti M, Perli T, Tonon E, Valentini V, Avi D, Ferrentino G, Dorigato A, Torre P, Jousson O, Mansy SS, Del Bianco C (2014) Ethylene-producing bacteria that ripen fruit. ACS Synth Biol 3(12):935–938. https://doi.org/10.1021/sb5000077
Dittrich P, Ibáñez AJ (2015) Analysis of metabolites in single cells-what is the best micro-platform? Electrophoresis 36(18):2196–2206. https://doi.org/10.1002/elps.201500045
Dobson HEM (1991) Analysis of flower and pollen volatiles. In: Linskens HF, Jackson JF (eds) Modern methods of plant analysis, vol 12. Springer, Berlin, pp 231–251
Ebel RC, Mattheis JP, Buchanan DA (1995) Drought stress of apple trees alters leaf emissions of volatile compounds. Physiol Plant 95:709–712
Ebert BE, Halbfeld C, Blank LM (2016) Exploration and exploitation of the yeast volatilome. Curr Metabol 4:1–17. https://doi.org/10.2174/2213235X04666160818151119
Filipiak W, Mochalski P, Filipiak A, Ager C, Cumeras R, Davis CE, Agapiou A, Unterkofler K, Troppmair J (2016) A compendium of volatile organic compounds (VOCs) released by human cell lines. Curr Med Chem 23(20):2112–2131
Flamini G, Cioni PL, Morelli I (2002) Differences in the fragrances of pollen and different floral parts of male and female flowers of Laurus nobilis. J Agric Chem 50:4647–4652
Frauendorfer F, Schieberle P (2006) Identification of the key aroma compounds in cocoa powder based on molecular sensory correlations. J Agric Food Chem 54:5521–5529
Garbeva P, Hordijk C, Gerards S, de Boer W (2014) Volatiles produced by the mycophagous soil bacterium Collimonas. FEMS Microbiol Ecol 87(3):639–649. https://doi.org/10.1111/1574-6941.12252
Gomase VS, Changbhale SS, Patil SA, Kale KV (2008) Metabolomics. Curr Drug Metab 9(1):89–98
Gomez-Diaz C, Benton R (2013) The joy of sex pheromones. EMBO Rep 14(10):874–883. https://doi.org/10.1038/embor.2013.140
Gowda GAN, Djukovic D (2014) Overview of mass spectrometry-based metabolomics: opportunities and challenges. In: Raftery D (ed) Mass spectrometry in metabolomics. Methods in molecular biology (methods and protocols), vol 1198. Humana Press, New York, pp 3–12. https://doi.org/10.1007/978-1-4939-1258-2_1
Heddergott C, Calvo AM, Latgé JP (2014) The volatome of Aspergillus fumigatus. Eukaryot Cell 13(8):1014–1025. https://doi.org/10.1128/EC.00074-14
Huang M, Hull CM (2017) Sporulation: how to survive on planet Earth (and beyond). Curr Genet 63(5):831–838. https://doi.org/10.1007/s00294-017-0694-7
Johnson CH, Ivanisevic J, Siuzdak G (2016) Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 17(7):451–459. https://doi.org/10.1038/nrm.2016.25
Kaiser R (1991) Trapping, investigation and reconstitution of flower scents. In: Mueller PM, Lamparsky D (eds) Perfumes: art, science, technology. Elsevier Applied Science, London, pp 213–250
Kessler A, Baldwin IT (2001) Defensive function of herbivore induced plant volatile emissions in nature. Science 291:2141–2144
Knauer AC, Schiestl FP (2017) The effect of pollinators and herbivores on selection for floral signals: a case study in Brassica rapa. Evol Ecol 31(2):285–304
Kücklich M, Möller M, Marcillo A, Einspanier A, Weiß BM, Birkemeyer C, Widdig A (2017) Different methods for volatile sampling in mammals. PLoS One 12(8):e0183440. https://doi.org/10.1371/journal.pone.0183440
Lemfack MC, Gohlke BO, Toguem SMT, Preissner S, Piechulla B, Preissner R (2017) mVOC 2.0: a database of microbial volatiles. Nucleic Acids Res. https://doi.org/10.1093/nar/gkx1016
Li X, Martinez-Lozano Sinues P, Dallmann R, Bregy L, Hollmén M, Proulx S, Brown SA, Detmar M, Kohler M, Zenobi R (2015) Drug pharmacokinetics determined by real-time analysis of mouse breath. Angew Chem Int Ed Engl 54(27):7815–7818. https://doi.org/10.1002/anie.201503312
Lubes G, Goodarzi M (2017) Analysis of volatile compounds by advanced analytical techniques and multivariate chemometrics. Chem Rev 117(9):6399–6422. https://doi.org/10.1021/acs.chemrev.6b00698
Maffei ME, Gertsch J, Appendino G (2011) Plant volatiles: production, function and pharmacology. Nat Prod Rep 28:1359–1380. https://doi.org/10.1039/c1np00021g
Magi E, Bono L, Di Carro M (2012) Characterization of cocoa liquors by GC–MS and LC–MS/MS: focus on alkylpyrazines and flavanols. J Mass Spectrom 47(9):1191–1197. https://doi.org/10.1002/jms.3034
Maniewski R, Liebert A, Kacprzak M, Zbiec A (2004) Selected application of near-infrared optical methods in medical diagnosis. Opto-Electron Rev 12:255–262
Medina A, Schmidt-Heydt M, Rodríguez A, Parra R, Geisen R, Magan N (2015) Impacts of environmental stress on growth, secondary metabolite biosynthetic gene clusters and metabolite production of xerotolerant/xerophilic fungi. Curr Genet 61(3):325–334. https://doi.org/10.1007/s00294-014-0455-9
Patti GJ, Yanes O, Siuzdak G (2012) Innovation: metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13(4):263–269. https://doi.org/10.1038/nrm3314
Pattrick JG, Shepherd T, Hoppitt W, Plowman NS, Willmer P (2017) A dual function for 4-methoxybenzaldehyde in Petasites fragrans? Pollinator-attractant and ant-repellent. Arthropod Plant Interact 11(5):623–627. https://doi.org/10.1007/s11829-017-9519-3
Pauling L, Robinson AB, Teranishi R, Cary P (1971) Quantitative analysis of urine vapour and breath by gas–liquid partition chromatography. Proc Natl Acad Sci USA 68:2374–2376
Phillips M, Cataneo RN, Chaturvedi A, Kaplan PD, Libardoni M, Mundada M, Patel U, Zhang X (2013) Detection of an extended human volatome with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. PLoS One 8(9):e75274. https://doi.org/10.1371/journal.pone.0075274
Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol 5:237–243
Primrose SB, Dilworth MJ (1976) Ethylene production by bacteria. J Gen Microbiol 93(1):177–181
Queralto N, Berliner AN, Goldsmith B, Martino R, Rhodes P, Lim SH (2014) Detecting cancer by breath volatile organic compound analysis: a review of array-based sensors. J Breath Res 8(2):027112. https://doi.org/10.1088/1752-7155/8/2/027112
Rattray NJ, Hamrang Z, Trivedi DK, Goodacre R, Fowler SJ (2014) Taking your breath away: metabolomics breathes life in to personalized medicine. Trends Biotechnol 32(10):538–548. https://doi.org/10.1016/j.tibtech.2014.08.003
Rodriguez-Campos J, Escalona-Buendía HB, Orozco-Avila I, Lugo-Cervantes E, Jaramillo-Flores ME (2011) Dynamics of volatile and non-volatile compounds in cocoa (Theobroma cacao L.) during fermentation and drying processes using principal components analysis. Food Res Int 44:250–258
Rodriguez-Campos J, Escalona-Buendía HB, Contreras-Ramos SM, Orozco-Avila I, Jaramillo-Flores E, Lugo-Cervantes E (2012) Effect of fermentation time and drying temperature on volatile compounds in cocoa. Food Chem 132:277–288
Rosenstiel TN, Potosnak MJ, Griffin KL, Fall R, Monson RK (2003) Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem. Nature 421:256–259
Rubiolo P, Liberto E, Sgorbini B, Russo R, Veuthey JL, Bicchi C (2008) Fast-GC conventional quadrupole mass spectrometry in essential oil analysis. J Sep Sci 31:1074–1084. https://doi.org/10.1002/jssc.200700577
Schmidt R, Etalo DW, de Jager V, Gerards S, Zweers H, de Boer W, Garbeva P (2016) Microbial small talk: volatiles in fungal–bacterial interactions. Front Microbiol 6:1495. https://doi.org/10.3389/fmicb.2015.01495
Schwab W, Davidovich-Rikanati R, Lewinsohn E (2008) Biosynthesis of plant-derived flavor compounds. Plant J 54(4):712–732. https://doi.org/10.1111/j.1365-313X.2008.03446.x
Sethi S, Nanda R, Chakraborty T (2013) Clinical application of volatile organic compound analysis for detecting infectious diseases. Clin Microbiol Rev 26(3):462–447. https://doi.org/10.1128/CMR.00020-13
Sévin DC, Kuehne A, Zamboni N, Sauer U (2015) Biological insights through nontargeted metabolomics. Curr Opin Biotechnol 34:1–8. https://doi.org/10.1016/j.copbio.2014.10.001
Sharkey TD, Singsaas EL (1995) Why plants emit isoprene. Nature 374:769–769
Singh KD, Vidal-de-Miguel G, Gaugg MT, Ibáñez AJ, Zenobi R, Kohler M, Frey U, Sinues PM-L (2017) Translating secondary electrospray ionization–high resolution mass spectrometry to the clinical environment
Sinha R, Khot LR, Schroeder BK, Si Y (2017) Rapid and non-destructive detection of Pectobacterium carotovorum causing soft rot in stored potatoes through volatile biomarkers sensing. Crop Protect 93:122. https://doi.org/10.1016/j.cropro.2016.11.028
Tejero Rioseras A, Gomez DG, Ebert BE, Blank LM, Ibáñez AJ, Sinues PM (2017) Comprehensive real-time analysis of the yeast volatilome. Sci Rep 7(1):14236. https://doi.org/10.1038/s41598-017-14554-y
Tholl D, Boland W, Hansel A, Loreto F, Röse US, Schnitzler JP (2006) Practical approaches to plant volatile analysis. Plant J 45(4):540–560
Turlings TCJ, Tumlinson JH, Lewis WJ (1990) Exploitation of herbivore-induced plant odors by host seeking parasitic wasps. Science 250:1251–1253
Wicher D (2015) Olfactory signaling in insects. Prog Mol Biol Transl Sci 130:37–54. https://doi.org/10.1016/bs.pmbts.2014.11.002
Wojtas J, Bielecki Z, Stacewicz T, Mikolajczyk J, Nowakowski M (2012) Ultrasensitive laser spectroscopy for breath analysis. Opto-Electron Rev 20:26–39
Acknowledgements
M.M. gratefully acknowledges the financial support of the Programa Nacional de Innovacion Agraria, PNIA (PNIA-16452-2016).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by M. Kupiec.
Rights and permissions
About this article
Cite this article
Mansurova, M., Ebert, B.E., Blank, L.M. et al. A breath of information: the volatilome. Curr Genet 64, 959–964 (2018). https://doi.org/10.1007/s00294-017-0800-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00294-017-0800-x
Keywords
- Volatilome
- Volatome
- Volatile organic compounds (VOCs)
- Mass spectrometry (MS)
- Secondary electrospray ionization (SESI)
- Pheromones