Skip to main content
Log in

The 19S proteasome regulates subtelomere silencing and facultative heterochromatin formation in fission yeast

  • Original Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Accumulating evidence shows that non-proteolytic functions of the proteasome are as crucial as its well-known proteolytic function in regulating cellular activities. In our recent work, we showed that the 19S proteasome mediates the heterochromatin spreading of centromeric heterochromatin in non-proteolytic manner. However, the involvement of the proteasome in other heterochromatin regions remained largely unknown. In the present study, we investigated the non-proteolytic role of the 19S proteasome in subtelomere and facultative heterochromatin regions. Using the non-proteolytic mutant, rpt4-1, we show that the 19S proteasome is involved in regulating subtelomere silencing and facultative heterochromatin formation in fission yeast. In addition to this proteasome-related regulation, we also observed a distinct pathway that regulates subtelomere silencing and facultative heterochromatin formation through the Paf1 complex subunit, Leo1. Our comparison of the two pathways revealed a new group of heterochromatin domains that are regulated exclusively by the proteasome pathway. Taken together, our findings reveal that the proteasome is involved in the global regulation of facultative and constitutive heterochromatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allshire RC, Ekwall K (2015) Epigenetic regulation of chromatin states in schizosaccharomyces pombe. Cold Spring Harb Perspect Biol 7:a018770

    Article  PubMed  PubMed Central  Google Scholar 

  • Archer CT, Burdine L, Liu B, Ferdous A, Johnston SA, Kodadek T (2008) Physical and functional interactions of monoubiquitylated transactivators with the proteasome. J Biol Chem 283:21789–21798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayoub N, Noma K, Isaac S, Kahan T, Grewal SI, Cohen A (2003) A novel jmjC domain protein modulates heterochromatization in fission yeast. Mol Cell Biol 23:4356–4370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birchler JA, Bhadra MP, Bhadra U (2000) Making noise about silence: repression of repeated genes in animals. Curr Opin Genet Dev 10:211–216

    Article  CAS  PubMed  Google Scholar 

  • Blackburn EH (2000) Telomere states and cell fates. Nature 408:53–56

    Article  CAS  PubMed  Google Scholar 

  • Braun BC, Glickman M, Kraft R, Dahlmann B, Kloetzel PM, Finley D, Schmidt M (1999) The base of the proteasome regulatory particle exhibits chaperone-like activity. Nature cell biology 1:221–226

    Article  CAS  PubMed  Google Scholar 

  • Buchanan L, Durand-Dubief M, Roguev A, Sakalar C, Wilhelm B, Stralfors A, Shevchenko A, Aasland R, Shevchenko A, Ekwall K, Stewart F, A (2009) The Schizosaccharomyces pombe JmjC-protein, Msc1, prevents H2A.Z localization in centromeric and subtelomeric chromatin domains. PLoS Genet 5:e1000726

    Article  PubMed  PubMed Central  Google Scholar 

  • Cam HP, Sugiyama T, Chen ES, Chen X, FitzGerald PC, Grewal SI (2005) Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nat Genet 37:809–819

    Article  CAS  PubMed  Google Scholar 

  • Chaves S, Baskerville C, Yu V, Reed SI (2010) Cks1, Cdk1, and the 19S proteasome collaborate to regulate gene induction-dependent nucleosome eviction in yeast. Mol Cell Biol 30:5284–5294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chikashige Y, Tsutsumi C, Okamasa K, Yamane M, Nakayama J, Niwa O, Haraguchi T, Hiraoka Y (2007) Gene expression and distribution of Swi6 in partial aneuploids of the fission yeast Schizosaccharomyces pombe. Cell Struct Funct 32:149–161

    Article  CAS  PubMed  Google Scholar 

  • Elsasser S, Chandler-Militello D, Muller B, Hanna J, Finley D (2004) Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome. J Biol Chem 279:26817–26822

    Article  CAS  PubMed  Google Scholar 

  • Ezhkova E, Tansey WP (2004) Proteasomal ATPases link ubiquitylation of histone H2B to methylation of histone H3. Mol Cell 13:435–442

    Article  CAS  PubMed  Google Scholar 

  • Ferdous A, Sikder D, Gillette T, Nalley K, Kodadek T, Johnston SA (2007) The role of the proteasomal ATPases and activator monoubiquitylation in regulating Gal4 binding to promoters. Genes Dev 21:112–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flury V, Georgescu PR, Iesmantavicius V, Shimada Y, Kuzdere T, Braun S, Buhler M (2017) The histone acetyltransferase Mst2 protects active chromatin from epigenetic silencing by acetylating the ubiquitin ligase Brl1. Mol Cell 67:294–307 e299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geng F, Tansey WP (2012) Similar temporal and spatial recruitment of native 19S and 20S proteasome subunits to transcriptionally active chromatin. Proc Natl Acad Sci US A 109:6060–6065

    Article  CAS  Google Scholar 

  • Geng F, Wenzel S, Tansey WP (2012) Ubiquitin and proteasomes in transcription. Annu Rev Biochem 81:177–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillette TG, Gonzalez F, Delahodde A, Johnston SA, Kodadek T (2004) Physical and functional association of RNA polymerase II and the proteasome. P Natl Acad Sci USA 101:5904–5909

    Article  CAS  Google Scholar 

  • Glickman MH, Rubin DM, Coux O, Wefes I, Pfeifer G, Cjeka Z, Baumeister W, Fried VA, Finley D (1998) A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94:615–623

    Article  CAS  PubMed  Google Scholar 

  • Gomez EB, Espinosa JM, Forsburg SL (2005) Schizosaccharomyces pombe mst2+ encodes a MYST family histone acetyltransferase that negatively regulates telomere silencing. Mol Cell Biol 25:8887–8903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grewal SI, Jia S (2007) Heterochromatin revisited. Nat Rev Genet 8:35–46

    Article  CAS  PubMed  Google Scholar 

  • Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  CAS  PubMed  Google Scholar 

  • Holoch D, Moazed D (2015) RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet 16:71–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huisinga KL, Brower-Toland B, Elgin SC (2006) The contradictory definitions of heterochromatin: transcription and silencing. Chromosoma 115:110–122

    Article  CAS  PubMed  Google Scholar 

  • Inada M, Nichols RJ, Parsa JY, Homer CM, Benn RA, Hoxie RS, Madhani HD, Shuman S, Schwer B, Pleiss JA (2016) Phospho-site mutants of the RNA Polymerase II C-terminal domain alter subtelomeric gene expression and chromatin modification state in fission yeast. Nucleic Acids Res 44:9180–9189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jung T, Catalgol B, Grune T (2009) The proteasomal system. Mol Aspects Med 30:191–296

    Article  CAS  PubMed  Google Scholar 

  • Kanoh J, Sadaie M, Urano T, Ishikawa F (2005) Telomere binding protein Taz1 establishes Swi6 heterochromatin independently of RNAi at telomeres. Curr Biol 15:1808–1819

    Article  CAS  PubMed  Google Scholar 

  • Kisselev AF, Callard A, Goldberg AL (2006) Importance of the different proteolytic sites of the proteasome and the efficacy of inhibitors varies with the protein substrate. J Biol Chem 281:8582–8590

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa T, Ishii K, Takeda K, Matsumoto T (2014) The 19S proteasome subunit Rpt3 regulates distribution of CENP-A by associating with centromeric chromatin. Nat Commun 5:3597

    Article  PubMed  Google Scholar 

  • Krogan NJ, Lam MH, Fillingham J, Keogh MC, Gebbia M, Li J, Datta N, Cagney G, Buratowski S, Emili A, Greenblatt JF (2004) Proteasome involvement in the repair of DNA double-strand breaks. Mol Cell 16:1027–1034

    Article  CAS  PubMed  Google Scholar 

  • Lam YA, Lawson TG, Velayutham M, Zweier JL, Pickart CM (2002) A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature 416:763–767

    Article  CAS  PubMed  Google Scholar 

  • Lee D, Ezhkova E, Li B, Pattenden SG, Tansey WP, Workman JL (2005) The proteasome regulatory particle alters the SAGA coactivator to enhance its interactions with transcriptional activators. Cell 123:423–436

    Article  CAS  PubMed  Google Scholar 

  • Lee NN, Chalamcharla VR, Reyes-Turcu F, Mehta S, Zofall M, Balachandran V, Dhakshnamoorthy J, Taneja N, Yamanaka S, Zhou M, Grewal SI (2013) Mtr4-like protein coordinates nuclear RNA processing for heterochromatin assembly and for telomere maintenance. Cell 155:1061–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Choi ES, Seo HD, Kang K, Gilmore JM, Florens L, Washburn MP, Choe J, Workman JL, Lee D (2017) Chromatin remodeller Fun30Fft3 induces nucleosome disassembly to facilitate RNA polymerase II elongation. Nat Commun 8:14527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim S, Kwak J, Kim M, Lee D (2013) Separation of a functional deubiquitylating module from the SAGA complex by the proteasome regulatory particle. Nat Commun 4:2641

    PubMed  Google Scholar 

  • Liu CW, Millen L, Roman TB, Xiong H, Gilbert HF, Noiva R, DeMartino GN, Thomas PJ (2002) Conformational remodeling of proteasomal substrates by PA700, the 19 S regulatory complex of the 26 S proteasome. J Biol Chem 277:26815–26820

    Article  CAS  PubMed  Google Scholar 

  • Madura K (2004) Rad23 and Rpn10: perennial wallflowers join the melee. Trends Biochem Sci 29:637–640

    Article  CAS  PubMed  Google Scholar 

  • Maganti N, Moody TD, Truax AD, Thakkar M, Spring AM, Germann MW, Greer SF (2014) Nonproteolytic roles of 19S ATPases in transcription of CIITApIV genes. PLoS One 9:e91200

    Article  PubMed  PubMed Central  Google Scholar 

  • Mandell JG, Bahler J, Volpe TA, Martienssen RA, Cech TR (2005) Global expression changes resulting from loss of telomeric DNA in fission yeast. Genome Biol 6:R1

    Article  PubMed  Google Scholar 

  • Martens JH, O’Sullivan RJ, Braunschweig U, Opravil S, Radolf M, Steinlein P, Jenuwein T (2005) The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J 24:800–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCann TS, Tansey WP (2014) Functions of the proteasome on chromatin. Biomolecules 4:1026–1044

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292:110–113

    Article  CAS  PubMed  Google Scholar 

  • Oh S, Jeong K, Kim H, Kwon CS, Lee D (2010) A lysine-rich region in Dot1p is crucial for direct interaction with H2B ubiquitylation and high level methylation of H3K79. Biochem Biophys Res Commun 399(4):512–517

    Article  CAS  PubMed  Google Scholar 

  • Peters JM, Franke WW, Kleinschmidt JA (1994) Distinct 19 S and 20 S subcomplexes of the 26 S proteasome and their distribution in the nucleus and the cytoplasm. J Biol Chem 269:7709–7718

    CAS  PubMed  Google Scholar 

  • Reyes-Turcu FE, Zhang K, Zofall M, Chen E, Grewal SI (2011) Defects in RNA quality control factors reveal RNAi-independent nucleation of heterochromatin. Nat Struct Mol Biol 18:1132–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahu PP, Sharma N, Puranik S, Chakraborty S, Prasad M (2016) Tomato 26S Proteasome subunit RPT4a regulates ToLCNDV transcription and activates hypersensitive response in tomato. Sci Rep 6:27078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauer RT, Baker TA (2011) AAA + proteases: ATP-fueled machines of protein destruction. Annu Rev Biochem 80:587–612

    Article  CAS  PubMed  Google Scholar 

  • Seo HD, Choi Y, Kim M, Kang K, Urano T, Lee D 2017. The 19S proteasome is directly involved in the regulation of heterochromatin spreading in fission yeast. J Biol Chem

  • Sikder D, Johnston SA, Kodadek T (2006) Widespread, but non-identical, association of proteasomal 19 and 20 S proteins with yeast chromatin. J Biol Chem 281:27346–27355

    Article  CAS  PubMed  Google Scholar 

  • Smith DM, Chang SC, Park S, Finley D, Cheng Y, Goldberg AL (2007) Docking of the proteasomal ATPases’ carboxyl termini in the 20S proteasome’s alpha ring opens the gate for substrate entry. Molecular cell 27:731–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stolz A, Hilt W, Buchberger A, Wolf DH (2011) Cdc48: a power machine in protein degradation. Trends Biochem Sci 36:515–523

    Article  CAS  PubMed  Google Scholar 

  • Szutorisz H, Georgiou A, Tora L, Dillon N (2006) The proteasome restricts permissive transcription at tissue-specific gene loci in embryonic stem cells. Cell 127:1375–1388

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K (2009) The proteasome: overview of structure and functions. Proc Jpn Acad Ser B Phys Biol Sci 85:12–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tashiro S, Handa T, Matsuda A, Ban T, Takigawa T, Miyasato K, Ishii K, Kugou K, Ohta K, Hiraoka Y, Masukata H, Kanoh J (2016) Shugoshin forms a specialized chromatin domain at subtelomeres that regulates transcription and replication timing. Nat Commun 7:10393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trewick SC, Minc E, Antonelli R, Urano T, Allshire RC (2007) The JmjC domain protein Epe1 prevents unregulated assembly and disassembly of heterochromatin. EMBO J 26:4670–4682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trojer P, Reinberg D (2007) Facultative heterochromatin: is there a distinctive molecular signature? Mol Cell 28:1–13

    Article  CAS  PubMed  Google Scholar 

  • Verma R, Aravind L, Oania R, McDonald WH, Yates JR 3rd, Koonin EV, Deshaies RJ (2002) Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298:611–615

    Article  CAS  PubMed  Google Scholar 

  • Verma R, Oania R, Graumann J, Deshaies RJ (2004) Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell 118:99–110

    Article  CAS  PubMed  Google Scholar 

  • Verrier L, Taglini F, Barrales RR, Webb S, Urano T, Braun S, Bayne EH (2015) Global regulation of heterochromatin spreading by Leo1. Open Biol 5:150045

    Article  PubMed  PubMed Central  Google Scholar 

  • Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68:1015–1068

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Wang S, Li W (2012) RSeQC: quality control of RNA-seq experiments. Bioinformatics 28:2184–2185

    Article  CAS  PubMed  Google Scholar 

  • Weiler KS, Wakimoto BT (1995) Heterochromatin and gene expression in Drosophila. Annu Rev Genet 29:577–605

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka S, Mehta S, Reyes-Turcu FE, Zhuang F, Fuchs RT, Rong Y, Robb GB, Grewal SI (2013) RNAi triggered by specialized machinery silences developmental genes and retrotransposons. Nature 493:557–560

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Mosch K, Fischle W, Grewal SI (2008) Roles of the Clr4 methyltransferase complex in nucleation, spreading and maintenance of heterochromatin. Nat Struct Mol Biol 15:381–388

    Article  CAS  PubMed  Google Scholar 

  • Zofall M, Grewal SI (2006) Swi6/HP1 recruits a JmjC domain protein to facilitate transcription of heterochromatic repeats. Mol Cell 22:681–692

    Article  CAS  PubMed  Google Scholar 

  • Zofall M, Yamanaka S, Reyes-Turcu FE, Zhang K, Rubin C, Grewal SI (2012) RNA elimination machinery targeting meiotic mRNAs promotes facultative heterochromatin formation. Science 335:96–100

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Robin Allshire, Amikam Cohen and Elizabeth Bayne for providing strains and reagents.

Author information

Authors and Affiliations

Authors

Contributions

HDS and DL conceived and designed the project; HDS performed most of the experiments and data analyses with input from DL; CSK contributed to revising the manuscript; HDS and DL drafted the manuscript; and all the authors contributed to revising the manuscript and gave final approval for its publication.

Corresponding author

Correspondence to Daeyoup Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest with respect to the contents of this article.

Funding

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2016R1A2B2006354). This work was also supported by grants from the KAIST Future Systems Healthcare Project funded by the Ministry of Science and ICT.

Additional information

Communicated by M. Kupiec.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 568 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, H.D., Kwon, C.S. & Lee, D. The 19S proteasome regulates subtelomere silencing and facultative heterochromatin formation in fission yeast. Curr Genet 64, 741–752 (2018). https://doi.org/10.1007/s00294-017-0792-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-017-0792-6

Keywords

Navigation