Skip to main content

Generation of an arginine-tRNA-adapted Saccharomyces cerevisiae strain for effective heterologous protein expression

Abstract

The tRNA population reflects the codon bias of the organism and affects the translation of heterologous target mRNA molecules. In this study, Saccharomyces cerevisiae strains with modified levels of rare tRNA were engineered, that allowed efficient generation of recombinant proteins with unfavorable codon usage. We established a novel synthetic tRNA expression cassette and verified functional nonsense suppressor tRNAGlnS CUA generation in a stop codon read-through assay with a modified β-galactosidase reporter gene. Correlation between altered tRNA and protein level was shown by survival of copper sensitive S. cerevisiae cells in the presence of copper ions by an increased transcription of tRNAArg CCG molecules, recognizing rare codons in a modified CUP1 gene. Genome integration of tRNA expression cassette led to the generation of arginine-tRNA-adapted S. cerevisiae strains, which showed elevated tRNA levels (tRNAArg CCG, tRNAArg GCG and tRNAArg UCG) pairing to rare codons. The modified strain MNY3 revealed a considerably improved monitoring of protein–protein interaction from Aspergillus fumigatus bait and prey sequences in yeast two-hybrid experiments. In future, this principle to overcome limited recombinant protein expression by tRNA adaption of expression strains instead of codon adaption might provide new designer yeast cells for an efficient protein production and for improved genome-wide protein–protein interaction analyses.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Ben-Yehezkel T et al (2015) Rationally designed, heterologous S. cerevisiae transcripts expose novel expression determinants. RNA Biol 12:972–984. https://doi.org/10.1080/15476286.2015.1071762

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bertrand E, Houser-Scott F, Kendall A, Singer RH, Engelke DR (1998) Nucleolar localization of early tRNA processing. Genes Dev 12:2463–2468

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Blanchet S, Cornu D, Argentini M, Namy O (2014) New insights into the incorporation of natural suppressor tRNAs at stop codons in Saccharomyces cerevisiae. Nucleic Acids Res 42:10061–10072. https://doi.org/10.1093/nar/gku663

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Bloom-Ackermann Z, Navon S, Gingold H, Towers R, Pilpel Y, Dahan O (2014) A comprehensive tRNA deletion library unravels the genetic architecture of the tRNA pool. PLoS Genet 10:e1004084. https://doi.org/10.1371/journal.pgen.1004084

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chu D, Barnes DJ, von der Haar T (2011) The role of tRNA and ribosome competition in coupling the expression of different mRNAs in Saccharomyces cerevisiae. Nucleic Acids Res 39:6705–6714. https://doi.org/10.1093/nar/gkr300

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. da Silva Ferreira ME et al (2006) The akuB(KU80) mutant deficient for nonhomologous end joining is a powerful tool for analyzing pathogenicity in Aspergillus fumigatus. Eukaryot Cell 5:207–211. https://doi.org/10.1128/EC.5.1.207-211.2006

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dieci G, Percudani R, Giuliodori S, Bottarelli L, Ottonello S (2000) TFIIIC-independent in vitro transcription of yeast tRNA genes. J Mol Biol 299:601–613. https://doi.org/10.1006/jmbi.2000.3783

    CAS  Article  PubMed  Google Scholar 

  8. Dong H, Nilsson L, Kurland CG (1996) Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. J Mol Biol 260:649–663. https://doi.org/10.1006/jmbi.1996.0428

    CAS  Article  PubMed  Google Scholar 

  9. Duret L (2000) tRNA gene number and codon usage in the C. elegans genome are co-adapted for optimal translation of highly expressed genes. Trends Genet 16:287–289

    CAS  Article  PubMed  Google Scholar 

  10. Fearon K, McClendon V, Bonetti B, Bedwell DM (1994) Premature translation termination mutations are efficiently suppressed in a highly conserved region of yeast Ste6p, a member of the ATP-binding cassette (ABC) transporter family. J Biol Chem 269:17802–17808

    CAS  PubMed  Google Scholar 

  11. Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340:245–246. https://doi.org/10.1038/340245a0

    CAS  Article  PubMed  Google Scholar 

  12. Furst P, Hu S, Hackett R, Hamer D (1988) Copper activates metallothionein gene transcription by altering the conformation of a specific DNA binding protein. Cell 55:705–717

    CAS  Article  PubMed  Google Scholar 

  13. Gietz D, St Jean A, Woods RA, Schiestl RH (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20:1425

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Giuliodori S et al (2003) A composite upstream sequence motif potentiates tRNA gene transcription in yeast. J Mol Biol 333:1–20

    CAS  Article  PubMed  Google Scholar 

  15. Goldman E, Rosenberg AH, Zubay G, Studier FW (1995) Consecutive low-usage leucine codons block translation only when near the 5′ end of a message in Escherichia coli. J Mol Biol 245:467–473

    CAS  Article  PubMed  Google Scholar 

  16. Guldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519–2524

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Heinekamp T et al (2015) Interference of Aspergillus fumigatus with the immune response. Semin Immunopathol 37:141–152. https://doi.org/10.1007/s00281-014-0465-1

    CAS  Article  PubMed  Google Scholar 

  18. Hinnen A et al (1995) Gene expression in recombinant yeast. Bioprocess Technol 22:121–193

    CAS  PubMed  Google Scholar 

  19. Huang ME, Cadieu E, Souciet JL, Galibert F (1997) Disruption of six novel yeast genes reveals three genes essential for vegetative growth and one required for growth at low temperature. Yeast 13:1181–1194. https://doi.org/10.1002/(SICI)1097-0061(19970930)13:12<1181::AID-YEA169>3.0.CO;2-O

    Article  Google Scholar 

  20. Iben JR, Maraia RJ (2012) tRNAomics: tRNA gene copy number variation and codon use provide bioinformatic evidence of a new anticodon:codon wobble pair in a eukaryote. RNA 18:1358–1372. https://doi.org/10.1261/rna.032151.111

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Ikemura T (1981) Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. J Mol Biol 151:389–409

    CAS  Article  PubMed  Google Scholar 

  22. Ikemura T (1985) Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2:13–34

    CAS  PubMed  Google Scholar 

  23. Kemp AJ, Betney R, Ciandrini L, Schwenger AC, Romano MC, Stansfield I (2013) A yeast tRNA mutant that causes pseudohyphal growth exhibits reduced rates of CAG codon translation. Mol Microbiol 87:284–300. https://doi.org/10.1111/mmi.12096

    CAS  Article  PubMed  Google Scholar 

  24. Klebe RJ, Harriss JV, Sharp ZD, Douglas MG (1983) A general method for polyethylene-glycol-induced genetic transformation of bacteria and yeast. Gene 25:333–341

    CAS  Article  PubMed  Google Scholar 

  25. Kramer EB, Hopper AK (2013) Retrograde transfer RNA nuclear import provides a new level of tRNA quality control in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 110:21042–21047. https://doi.org/10.1073/pnas.1316579110

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Kurland C, Gallant J (1996) Errors of heterologous protein expression. Curr Opin Biotechnol 7:489–493

    CAS  Article  PubMed  Google Scholar 

  27. Lanza AM, Curran KA, Rey LG, Alper HS (2014) A condition-specific codon optimization approach for improved heterologous gene expression in Saccharomyces cerevisiae. BMC Syst Biol 8:33. https://doi.org/10.1186/1752-0509-8-33

    Article  PubMed  PubMed Central  Google Scholar 

  28. Launhardt H, Munder T (2000) Post-translational regulation of Saccharomyces cerevisiae proteins tagged with the hormone-binding domains of mammalian nuclear receptors. Mol Gen Genet 264:317–324

    CAS  Article  PubMed  Google Scholar 

  29. Lithwick G, Margalit H (2003) Hierarchy of sequence-dependent features associated with prokaryotic translation. Genome Res 13:2665–2673. https://doi.org/10.1101/gr.1485203

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Lu Z (2012) Interaction of nonsense suppressor tRNAs and codon nonsense mutations or termination codons. Adv Biol Chem 2:301–314. https://doi.org/10.4236/abc.2012.23038

    CAS  Article  Google Scholar 

  31. Magnani Dinamarco T et al (2012) Aspergillus fumigatus calcineurin interacts with a nucleoside diphosphate kinase. Microbes Infect 14:922–929. https://doi.org/10.1016/j.micinf.2012.05.003

    CAS  Article  PubMed  Google Scholar 

  32. Mumberg D, Muller R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156:119–122

    CAS  Article  PubMed  Google Scholar 

  33. Murray LE, Rowley N, Dawes IW, Johnston GC, Singer RA (1998) A yeast glutamine tRNA signals nitrogen status for regulation of dimorphic growth and sporulation. Proc Natl Acad Sci USA 95:8619–8624

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Nakamura Y, Gojobori T, Ikemura T (2000) Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res 28:292

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Novy R, Drott D, Yaeger K, Mierendorf R (2001) Overcoming the codon bias of E. coli for enhanced protein expression. inNovations 12:1–3

    Google Scholar 

  36. Percudani R, Pavesi A, Ottonello S (1997) Transfer RNA gene redundancy and translational selection in Saccharomyces cerevisiae. J Mol Biol 268:322–330. https://doi.org/10.1006/jmbi.1997.0942

    CAS  Article  PubMed  Google Scholar 

  37. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Phizicky EM, Hopper AK (2010) tRNA biology charges to the front. Genes Dev 24:1832–1860. https://doi.org/10.1101/gad.1956510

    Article  PubMed  PubMed Central  Google Scholar 

  39. Protacio RU, Storey AJ, Davidson MK, Wahls WP (2015) Nonsense codon suppression in fission yeast due to mutations of tRNA(Ser.11) and translation release factor Sup35 (eRF3). Curr Genet 61:165–173. https://doi.org/10.1007/s00294-014-0465-7

    CAS  Article  PubMed  Google Scholar 

  40. Raymond KC, Raymond GJ, Johnson JD (1985) In vivo modulation of yeast tRNA gene expression by 5′-flanking sequences. EMBO J 4:2649–2656

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Reijo RA, Cho DS, Huffaker TC (1993) Deletion of a single-copy tRNA affects microtubule function in Saccharomyces cerevisiae. Genetics 135:955–962

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Schmidt FR (2004) Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 65:363–372. https://doi.org/10.1007/s00253-004-1656-9

    CAS  Article  PubMed  Google Scholar 

  43. Shah P, Ding Y, Niemczyk M, Kudla G, Plotkin JB (2013) Rate-limiting steps in yeast protein translation. Cell 153:1589–1601. https://doi.org/10.1016/j.cell.2013.05.049

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Sharp PM, Bailes E, Grocock RJ, Peden JF, Sockett RE (2005) Variation in the strength of selected codon usage bias among bacteria. Nucleic Acids Res 33:1141–1153. https://doi.org/10.1093/nar/gki242

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Soriani FM et al (2010) Identification of possible targets of the Aspergillus fumigatus CRZ1 homologue, CrzA. BMC Microbiol 10:12. https://doi.org/10.1186/1471-2180-10-12

    Article  PubMed  PubMed Central  Google Scholar 

  46. Thiele DJ (1988) ACE1 regulates expression of the Saccharomyces cerevisiae metallothionein gene. Mol Cell Biol 8:2745–2752

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Thompson M, Haeusler RA, Good PD, Engelke DR (2003) Nucleolar clustering of dispersed tRNA genes. Science 302:1399–1401. https://doi.org/10.1126/science.1089814

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Tuller T, Zur H (2015) Multiple roles of the coding sequence 5′ end in gene expression regulation. Nucleic Acids Res 43:13–28. https://doi.org/10.1093/nar/gku1313

    CAS  Article  PubMed  Google Scholar 

  49. Varenne S, Buc J, Lloubes R, Lazdunski C (1984) Translation is a non-uniform process. Effect of tRNA availability on the rate of elongation of nascent polypeptide chains. J Mol Biol 180:549–576

    CAS  Article  PubMed  Google Scholar 

  50. Wang L, Haeusler RA, Good PD, Thompson M, Nagar S, Engelke DR (2005) Silencing near tRNA genes requires nucleolar localization. J Biol Chem 280:8637–8639. https://doi.org/10.1074/jbc.C500017200

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ella Schuster for assistance during her master thesis. This study was supported by the Ernst-Abbe University of Applied Sciences Jena, by the Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute Jena and the collaborative research center/transregio 124 FungiNet (project A1) funded by the Deutsche Forschungsgemeinschaft. We thank Dr. Pollok for critical reading of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas Munder.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Noßmann, M., Pieper, J., Hillmann, F. et al. Generation of an arginine-tRNA-adapted Saccharomyces cerevisiae strain for effective heterologous protein expression. Curr Genet 64, 589–598 (2018). https://doi.org/10.1007/s00294-017-0774-8

Download citation

Keywords

  • Codon usage
  • tRNA
  • Yeast two-hybrid system
  • Saccharomyces cerevisiae
  • Aspergillus fumigatus
  • Heterologous protein expression