Advertisement

Current Genetics

, Volume 64, Issue 2, pp 405–412 | Cite as

Modulating signaling networks by CRISPR/Cas9-mediated transposable element insertion

  • Luis María Vaschetto
Review

Abstract

In a recent past, transposable elements (TEs) were referred to as selfish genetic components only capable of copying themselves with the aim of increasing the odds of being inherited. Nonetheless, TEs have been initially proposed as positive control elements acting in synergy with the host. Nowadays, it is well known that TE movement into host genome comprises an important evolutionary mechanism capable of increasing the adaptive fitness. As insights into TE functioning are increasing day to day, the manipulation of transposition has raised an interesting possibility of setting the host functions, although the lack of appropriate genome engineering tools has unpaved it. Fortunately, the emergence of genome editing technologies based on programmable nucleases, and especially the arrival of a multipurpose RNA-guided Cas9 endonuclease system, has made it possible to reconsider this challenge. For such purpose, a particular type of transposons referred to as miniature inverted-repeat transposable elements (MITEs) has shown a series of interesting characteristics for designing functional drivers. Here, recent insights into MITE elements and versatile RNA-guided CRISPR/Cas9 genome engineering system are given to understand how to deploy the potential of TEs for control of the host transcriptional activity.

Keywords

CRISPR/Cas9 TE-based drives Genome editing Miniature inverted transposable elements Transcriptional control Transposable element amplification 

Notes

Acknowledgements

The author would like to thank Marcela Rivarola and Cristian Arellano for grammatical corrections. Also, I wish to thank Jimena Ingaramo who provided support in the preparation of the figures.

Compliance with ethical standards

Conflict of interest

The author declares that has no conflict of interest.

References

  1. Adelman ZN, Tu Z (2016) Control of mosquito-borne infectious diseases: sex and gene drive. Trends Parasitol 32:219–229CrossRefPubMedPubMedCentralGoogle Scholar
  2. Baillie JK, Barnett MW, Upton KR, Gerhardt DJ, Richmond TA, De Sapio F, Talbot RT (2011) Somatic retrotransposition alters the genetic landscape of the human brain. Nature 479:534–537CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barrangou R, Birmingham A, Wiemann S, Beijersbergen RL, Hornung V, van Brabant Smith A (2015) Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference. Nucleic Acids Res 43:3407–3419CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bolotin A, Quinquis B, Sorokin A, Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151:2551–2561CrossRefPubMedGoogle Scholar
  5. Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52CrossRefPubMedGoogle Scholar
  6. Buchon N, Vaury C (2006) RNAi: a defensive RNA-silencing against viruses and transposable elements. Heredity 96:195CrossRefPubMedGoogle Scholar
  7. Burt A (2003) Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc Biol Sci 270:921–928CrossRefPubMedPubMedCentralGoogle Scholar
  8. Casacuberta JM, Santiago N (2003) Plant LTR-retrotransposons and MITEs: control of transposition and impact on the evolution of plant genes and genomes. Gene 311:1–11CrossRefPubMedGoogle Scholar
  9. Castelletti S, Tuberosa R, Pindo M, Salvi S (2014) A MITE transposon insertion is associated with differential methylation at the maize flowering time QTL Vgt1. G3 4:805–812Google Scholar
  10. Castilho BA, Casadaban MJ (1991) Specificity of mini-Mu bacteriophage insertions in a small plasmid. J Bacteriol 173:1339–1343CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chen J, Hu Q, Lu C, Kuang H (2014) Evolutionary genomics of miniature inverted-repeat transposable elements (MITEs) in plants. In: Pontarotti P (ed) Evolutionary biology: genome evolution, speciation, coevolution and origin of life. Springer, Cham, pp 157–168Google Scholar
  12. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cowley M, Oakey RJ (2013) Transposable elements re-wire and fine-tune the transcriptome. PLoS Genet 9:e1003234CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cox DBT, Platt RJ, Zhang F (2015) Therapeutic genome editing: prospects and challenges. Nat Med 21:121–131CrossRefPubMedPubMedCentralGoogle Scholar
  15. DiCarlo JE, Chavez A, Dietz SL, Esvelt KM, Church GM (2015) Safeguarding CRISPR-Cas9 gene drives in yeast. Nat Biotechnol. doi: 10.1038/nbt.3412 PubMedPubMedCentralGoogle Scholar
  16. Dong HT, Zhang L, Zheng KL, Yao HG, Chen J, Yu FC, Li DB (2012) A Gaijin-like miniature inverted repeat transposable element is mobilized in rice during cell differentiation. BMC Genom 13:135CrossRefGoogle Scholar
  17. Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096CrossRefPubMedGoogle Scholar
  18. Esvelt KM, Smidler AL, Catteruccia F, Church GM (2014) Concerning RNA-guided gene drives for the alteration of wild populations. Elife 3:e03401CrossRefPubMedPubMedCentralGoogle Scholar
  19. Feng G, Leem YE, Levin HL. 2013. Transposon integration enhances expression of stress response genes. Nucleic Acids Res 41:775–789CrossRefPubMedGoogle Scholar
  20. Feschotte C (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9:397–405CrossRefPubMedPubMedCentralGoogle Scholar
  21. Feschotte C, Jiang N, Wessler SR (2002a) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329CrossRefPubMedGoogle Scholar
  22. Feschotte C, Zhang X, Wessler S (2002b) Miniature inverted-repeat transposable elements (MITEs) and their relationship with established DNA transposons. In: Craig NL, Craigie R, Gellert M, Lambowitz AM (eds) Mobile DNA II, vol 35. American Society for Microbiology Press, Washington, DC, pp 1147–1158CrossRefGoogle Scholar
  23. Gantz VM, Bier E (2015) The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations. Science 348:442–444CrossRefPubMedPubMedCentralGoogle Scholar
  24. Garfinkel DJ, Tucker JM, Saha A, Nishida Y, Pachulska-Wieczorek K, Błaszczyk L, Purzycka KJ (2016) A self-encoded capsid derivative restricts Ty1 retrotransposition in Saccharomyces. Curr Genet 62:321–329CrossRefPubMedGoogle Scholar
  25. Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C, Katsanos D, …Burt A (2016) A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat Biotechnol 34:78–83CrossRefPubMedGoogle Scholar
  26. Hancock CN, Zhang F, Floyd K, Richardson AO, LaFayette P, Tucker D, Parrott WA (2011) The rice miniature inverted repeat transposable element mPing is an effective insertional mutagen in soybean. Plant Physiol 157:552–562CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hollister JD, Gaut BS (2009) Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res 19:1419–1428CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hou J, Long Y, Raman H, Zou X, Wang J, Dai S, …Meng J (2012) A tourist-like MITE insertion in the upstream region of the BnFLC. A10 gene is associated with vernalization requirement in rapeseed (Brassica napus L.). BMC Plant Biol 12:1CrossRefGoogle Scholar
  29. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429–5433CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jansen R, Embden J, Gaastra W, Schouls L (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43:1565–1575CrossRefPubMedGoogle Scholar
  31. Jiang N, Wessler SR (2001) Insertion preference of maize and rice miniature inverted repeat transposable elements as revealed by the analysis of nested elements. Plant Cell 13:2553–2564CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jiang N, Bao Z, Zhang X, Hirochika H, Eddy SR, McCouch SR, Wessler SR (2003) An active DNA transposon family in rice. Nature 421:163–167CrossRefPubMedGoogle Scholar
  33. Jiang N, Feschotte C, Zhang X, Wessler SR (2004) Using rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs). Curr Opin Plant Biol 7:115–119CrossRefPubMedGoogle Scholar
  34. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821CrossRefPubMedGoogle Scholar
  35. Jordan IK, Rogozin IB, Glazko GV, Koonin EV (2003) Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet 19:68–72CrossRefPubMedGoogle Scholar
  36. Kettlun C, Galvan DL, George AL, Kaja A, Wilson MH (2011) Manipulating piggyBac transposon chromosomal integration site selection in human cells. Mol Ther 19:1636–1644CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kikuchi K, Terauchi K, Wada M, Hirano HY (2003) The plant MITE mPing is mobilized in anther culture. Nature 421:167–170CrossRefPubMedGoogle Scholar
  38. Kim KD, El Baidouri M, Abernathy B, Iwata-Otsubo A, Chavarro C, Gonzales M, Jackson SA (2015) A comparative epigenomic analysis of polyploidy-derived genes in soybean and common bean. Plant Physiol 168:1433–1447CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kuang H, Padmanabhan C, Li F, Kamei A, Bhaskar PB, Ouyang S, Baker B (2009) Identification of miniature inverted-repeat transposable elements (MITEs) and biogenesis of their siRNAs in the Solanaceae: new functional implications for MITEs. Genome Res 19:42–56CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lai WC, Sun HFS, Lin PH, Lin H, Shieh JC (2016) A new rapid and efficient system with dominant selection developed to inactivate and conditionally express genes in Candida albicans. Curr Genet 62:213–235CrossRefPubMedGoogle Scholar
  41. Li LC, Okino ST, Zhao H, Pookot D, Place RF, Urakami S, Enokida H, Dahiya R (2006) Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci USA 103:17337–17342CrossRefPubMedPubMedCentralGoogle Scholar
  42. Li X, Burnight ER, Cooney AL, Malani N, Brady T, Sander JD, Bushman FD (2013) piggyBac transposase tools for genome engineering. Proc Natl Acad Sci USA 110:E2279–E2287CrossRefPubMedPubMedCentralGoogle Scholar
  43. Li J, Wang Z, Peng H, Liu Z (2014) A MITE insertion into the 3′-UTR regulates the transcription of TaHSP16. 9 in common wheat. Crop J 2:381–387CrossRefGoogle Scholar
  44. Li X, Wu R, Ventura A (2016) The present and future of genome editing in cancer research. Hum Genet 135:1083–1092CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lin X, Long L, Shan X, Zhang S, Shen S, Liu B (2006) In planta mobilization of mPing and its putative autonomous element Pong in rice by hydrostatic pressurization. J Exp Bot 57:2313–2323CrossRefPubMedGoogle Scholar
  46. Lorenzetti AP, de Antonio GY, Paschoal AR, Domingues DS (2016) PlanTE-MIR DB: a database for transposable element-related microRNAs in plant genomes. Funct Integr Genom 16:235–242CrossRefGoogle Scholar
  47. Lu C, Chen J, Zhang Y, Hu Q, Su W, Kuang H (2012) Miniature inverted-repeat transposable elements (MITEs) have been accumulated through amplification bursts and play important roles in gene expression and species diversity in Oryza sativa. Mol Biol Evol 29:1005–1017CrossRefPubMedGoogle Scholar
  48. Mai G, Ge R, Sun G, Meng Q, Zhou F (2016) A comprehensive curation shows the dynamic evolutionary patterns of prokaryotic CRISPRs. Biomed Res Int. doi: 10.1155/2016/7237053 Google Scholar
  49. Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Van Der Oost J (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9:467CrossRefPubMedGoogle Scholar
  50. Mao H, Wang H, Liu S, Li Z, Yang X, Yan J, Qin F (2015) A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat Commun 6:8326CrossRefPubMedPubMedCentralGoogle Scholar
  51. Matsunaga W, Kobayashi A, Kato A, Ito H (2012) The effects of heat induction and the siRNA biogenesis pathway on the transgenerational transposition of ONSEN, a copia-like retrotransposon in Arabidopsis thaliana. Plant Cell Physiol 53:824–833CrossRefPubMedGoogle Scholar
  52. McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801CrossRefPubMedGoogle Scholar
  53. Mojica FJM, García-Martínez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60:174–182CrossRefPubMedGoogle Scholar
  54. Molyneux SD, Waterhouse PD, Shelton D, Shao YW, Watling CM, Tang QL, Zhang X (2014) Human somatic cell mutagenesis creates genetically tractable sarcomas. Nat Genet 46:964–972CrossRefPubMedGoogle Scholar
  55. Momose M, Abe Y, Ozeki Y (2010) Miniature inverted-repeat transposable elements of Stowaway are active in potato. Genetics 186:59–66CrossRefPubMedPubMedCentralGoogle Scholar
  56. Mourier T (2016) Potential movement of transposable elements through DNA circularization. Curr Genet 62:697–700CrossRefPubMedGoogle Scholar
  57. Naito K, Zhang F, Tsukiyama T, Saito H, Hancock CN, Richardson AO, Wessler SR (2009) Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature 461:1130–1134CrossRefPubMedGoogle Scholar
  58. Naito K, Monden Y, Yasuda K, Saito H, Okumoto Y (2014) mPing: the bursting transposon. Breeding Sci 64:109–114CrossRefGoogle Scholar
  59. Owens JB, Mauro D, Stoytchev I, Bhakta MS, Kim MS, Segal DJ, Moisyadi S (2013) Transcription activator like effector (TALE)-directed piggyBac transposition in human cells. Nucleic Acids Res 41:9197–9207CrossRefPubMedPubMedCentralGoogle Scholar
  60. Palazzoli F, Testu FX, Merly F, Bigot Y (2010) Transposon tools: worldwide landscape of intellectual property and technological developments. Genetica 138:285–299CrossRefPubMedGoogle Scholar
  61. Paszkowski J (2015) Controlled activation of retrotransposition for plant breeding. Curr Opin Biotechnol 32:200–206CrossRefPubMedGoogle Scholar
  62. Patel M, Jung S, Moore K, Powell G, Ainsworth C, Abbott A (2004) High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theor Appl Genet 108:1492–1502CrossRefPubMedGoogle Scholar
  63. Qüesta JI, Walbot V, Casati P (2010) Mutator transposon activation after UV-B involves chromatin remodeling. Epigenetics 5:352–363CrossRefPubMedPubMedCentralGoogle Scholar
  64. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Zhang F (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–1389CrossRefPubMedPubMedCentralGoogle Scholar
  65. Sakuma T, Yamamoto T (2015) CRISPR/Cas9: the leading edge of genome editing technology. Targeted genome editing using site-specific nucleases. Springer, Tokyo, pp 25–41Google Scholar
  66. Shan X, Liu Z, Dong Z, Wang Y, Chen Y, Lin X, Liu B (2005) Mobilization of the active MITE transposons mPing and Pong in rice by introgression from wild rice (Zizania latifolia Griseb.). Mol Biol Evol 22:976–990CrossRefPubMedGoogle Scholar
  67. Shirasawa K, Hirakawa H, Tabata S, Hasegawa M, Kiyoshima H, Suzuki S, Isobe S (2012) Characterization of active miniature inverted-repeat transposable elements in the peanut genome. Theor Appl Genet 124:1429–1438CrossRefPubMedPubMedCentralGoogle Scholar
  68. Singer T, McConnell MJ, Marchetto MC, Coufal NG, Gage FH (2010) LINE-1 retrotransposons: mediators of somatic variation in neuronal genomes? Trends Neurosci 33:345–354CrossRefPubMedPubMedCentralGoogle Scholar
  69. Szabo M, Müller F, Kiss J, Balduf C, Strähle U, Olasz F (2003) Transposition and targeting of the prokaryotic mobile element IS30 in zebrafish. FEBS Lett 550:46–50CrossRefPubMedGoogle Scholar
  70. Turner M, Jiao A, Slack FJ (2014) Autoregulation of lin-4 microRNA transcription by RNA activation (RNAa) in C. elegans. Cell Cycle 13:772–781CrossRefPubMedPubMedCentralGoogle Scholar
  71. Vaschetto LM (2016) Miniature inverted-repeat transposable elements (MITEs) and their effects on the regulation of major genes in cereal grass genomes. Mol Breed 36:1–4CrossRefGoogle Scholar
  72. Walsh RM, Hochedlinger K (2013) A variant CRISPR-Cas9 system adds versatility to genome engineering. Proc Natl Acad Sci USA 110:15514–15515CrossRefPubMedPubMedCentralGoogle Scholar
  73. Wessler SR, Bureau TE, White SE (1995) LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genet Dev 5:814–821CrossRefPubMedGoogle Scholar
  74. Yan Y, Zhang Y, Yang K, Sun Z, Fu Y, Chen X, Fang R (2011) Small RNAs from MITE-derived stem-loop precursors regulate abscisic acid signaling and abiotic stress responses in rice. Plant J 65:820–828CrossRefPubMedGoogle Scholar
  75. Yang G, Lee YH, Jiang Y, Shi X, Kertbundit S, Hall TC (2005) A two-edged role for the transposable element Kiddo in the rice ubiquitin2 promoter. Plant Cell 17:1559–1568CrossRefPubMedPubMedCentralGoogle Scholar
  76. Yant SR, Huang Y, Akache B, Kay MA (2007) Site-directed transposon integration in human cells. Nucleic Acids Res 35:e50CrossRefPubMedPubMedCentralGoogle Scholar
  77. Ye C, Ji G, Liang C (2016) detectMITE: a novel approach to detect miniature inverted repeat transposable elements in genomes. Sci Rep 6:19688CrossRefPubMedPubMedCentralGoogle Scholar
  78. Zhang Q, Arbuckle J, Wessler SR (2000) Recent, extensive, and preferential insertion of members of the miniature inverted-repeat transposable element family Heartbreaker into genic regions of maize. Proc Natl Acad Sci USA 97:1160–1165CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Instituto de Diversidad y Ecología AnimalConsejo Nacional de Investigaciones Científicas y Técnicas (IDEA, CONICET)CórdobaArgentina
  2. 2.Cátedra de Diversidad Animal I, Facultad de Ciencias Exactas, Físicas y NaturalesUniversidad Nacional de Córdoba, (FCEFyN, UNC)CórdobaArgentina

Personalised recommendations