Screening for amyloid proteins in the yeast proteome

Abstract

The search for novel pathological and functional amyloids represents one of the most important tasks of contemporary biomedicine. Formation of pathological amyloid fibrils in the aging brain causes incurable neurodegenerative disorders such as Alzheimer’s, Parkinson’s Huntington’s diseases. At the same time, a set of amyloids regulates vital processes in archaea, prokaryotes and eukaryotes. Our knowledge of the prevalence and biological significance of amyloids is limited due to the lack of universal methods for their identification. Here, using our original method of proteomic screening PSIA–LC–MALDI, we identified a number of proteins that form amyloid-like detergent-resistant aggregates in Saccharomyces cerevisiae. We revealed in yeast strains of different origin known yeast prions, prion-associated proteins, and a set of proteins whose amyloid properties were not shown before. A substantial number of the identified proteins are cell wall components, suggesting that amyloids may play important roles in the formation of this extracellular protective sheath. Two proteins identified in our screen, Gas1 and Ygp1, involved in biogenesis of the yeast cell wall, were selected for detailed analysis of amyloid properties. We show that Gas1 and Ygp1 demonstrate amyloid properties both in vivo in yeast cells and using the bacteria-based system C-DAG. Taken together, our data show that this proteomic approach is very useful for identification of novel amyloids.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Allen KD, Wegrzyn RD, Chernova TA, Müller S, Newnam GP, Winslett PA, Wittich KB, Wilkinson KD, Chernoff YO (2005) Hsp70 chaperones as modulators of prion life cycle. Novel effects of Ssa and Ssb on the Saccharomyces cerevisiae Prion [PSI+]. Genetics 169:1227–1242

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Antonets KS, Sargsyan HM, Nizhnikov AA (2016) Glutamine/Asparagine-rich fragment of Gln3, but not the full-length protein, aggregates in Saccharomyces cerevisiae. Biochemistry (Mosc) 81:407–413. doi:10.1134/S0006297916040118

    CAS  Article  Google Scholar 

  3. Bagriantsev SN, Kushnirov VV, Liebman SW (2006) Analysis of amyloid aggregates using agarose gel electrophoresis. Methods Enzymol 412:33–48. doi:10.1016/S0076-6879(06)12003-0

    CAS  Article  PubMed  Google Scholar 

  4. Bardill JP, Dulle JE, Fisher JR, True HL (2009) Requirements of Hsp104p activity and Sis1p binding for propagation of the [RNQ(+)] prion. Prion 3:151–160

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bezsonov EE, Groenning M, Galzitskaya OV, Gorkovskii AA, Semisotnov GV, Selyakh IO, Ziganshin RH, Rekstina VV, Kudryashova IB, Kuznetsov SA, Kulaev IS, Kalebina TS (2013) Amyloidogenic peptides of yeast cell wall glucantransferase Bgl2p as a model for the investigation of its pH-dependent fibril formation. Prion 7:175–184. doi:10.4161/pri.22992

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Brennan TC, Krömer JO, Nielsen LK (2013) Physiological and transcriptional responses of Saccharomyces cerevisiae to d-limonene show changes to the cell wall but not to the plasma membrane. Appl Environ Microbiol 79:3590–3600. doi:10.1128/AEM.00463-13

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Broach JR, Strathern JN, Hicks JB (1979) Transformation in yeast: development of a hybrid cloning vector and isolation of the can1 gene. Gene 8:121–133

    CAS  Article  PubMed  Google Scholar 

  8. Burgess RJ, Guy MP, Zhang Z (2009) Fueling transcriptional silencing with Gas1. Proc Natl Acad Sci USA 106:10879–10880. doi:10.1073/pnas.0905192106

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Chapman MR, Robinson LS, Pinkner JS, Roth R, Heuser J, Hammar M, Normark S, Hultgren SJ (2002) Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295:851–855. doi:10.1126/science.1067484

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Chernoff YO (2001) Mutation processes at the protein level: is Lamarck back? Mutat Res 488:39–64

    CAS  Article  PubMed  Google Scholar 

  11. Chernoff YO, Kiktev DA (2016) Dual role of ribosome-associated chaperones in prion formation and propagation. Curr Genet 62:677–685. doi:10.1007/s00294-016-0586-2

    CAS  Article  PubMed  Google Scholar 

  12. Chernoff YO, Newnam GP, Kumar J, Allen K, Zink AD (1999) Evidence for a protein mutator in yeast: role of the Hsp70-related chaperone Ssb in formation, stability, and toxicity of the [PSI] prion. Mol Cell Biol 19:8103–8112

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Destruelle M, Holzer H, Klionsky DJ (1994) Identification and characterization of a novel yeast gene: the YGP1 gene product is a highly glycosylated secreted protein that is synthesized in response to nutrient limitation. Mol Cell Biol 14:2740–2754

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Fowler DM, Koulov AV, Alory-Jost C, Marks MS, Balch WE, Kelly JW (2006) Functional amyloid formation within mammalian tissue. PLoS Biol 4:e6. doi:10.1371/journal.pbio.0040006

    Article  PubMed  Google Scholar 

  15. Humenik M, Smith AM, Arndt S, Scheibel T (2015) Ion and seed dependent fibril assembly of a spidroin core domain. J Struct Biol 191:130–138. doi:10.1016/j.jsb.2015.06.021

    CAS  Article  PubMed  Google Scholar 

  16. Kalebina TS, Plotnikova TA, Gorkovskii AA, Selyakh IO, Galzitskaya OV et al (2008) Amyloid-like properties of Saccharomyces cerevisiae cell wall glucantransferase Bgl2p: prediction and experimental evidences. Prion 2:91–96

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kenney JM, Knight D, Wise MJ, Vollrath F (2002) Amyloidogenic nature of spider silk. Eur J Biochem 269:4159–4163

    CAS  Article  PubMed  Google Scholar 

  18. Koch MR, Pillus L (2009) The glucanosyltransferase Gas1 functions in transcriptional silencing. Proc Natl Acad Sci USA 106:11224–11229. doi:10.1073/pnas.0900809106

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Kryndushkin DS, Alexandrov IM, Ter-Avanesyan MD, Kushnirov VV (2003) Yeast [PSI+] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104. J Biol Chem 278:49636–49643. doi:10.1074/jbc.M307996200

    CAS  Article  PubMed  Google Scholar 

  20. Kryndushkin D, Pripuzova N, Burnett B, Shewmaker F (2013) Non-targeted identification of prions and amyloid-forming proteins from yeast and mammalian cells. J Biol Chem 288:27100–27111. doi:10.1074/jbc.M113.485359

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Kushnirov VV, Ter-Avanesyan MD (1998) Structure and replication of yeast prions. Cell 94:13–16

    CAS  Article  PubMed  Google Scholar 

  22. Majumdar A, Cesario WC, White-Grindley E, Jiang H, Ren F, Khan MR, Li L, Choi EM, Kannan K, Guo F, Unruh J, Slaughter B, Si K (2012) Critical role of amyloid-like oligomers of Drosophila Orb2 in the persistence of memory. Cell 148:515–529. doi:10.1016/j.cell.2012.01.004

    CAS  Article  PubMed  Google Scholar 

  23. Moreno-García J, Mauricio JC, Moreno J, García-Martínez T (2017) Differential proteome analysis of a flor yeast strain under biofilm formation. Int J Mol Sci 18:720. doi:10.3390/ijms18040720

    Article  PubMed Central  Google Scholar 

  24. Newnam GP, Wegrzyn RD, Lindquist SL, Chernoff YO (1999) Antagonistic interactions between yeast chaperones Hsp104 and Hsp70 in prion curing. Mol Cell Biol 19:1325–1333. doi:10.1038/nprot.2013.081

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Nizhnikov AA, Alexandrov AI, Ryzhova TA, Mitkevich OV, Dergalev AA, Ter-Avanesyan MD, Galkin AP (2014) Proteomic screening for amyloid proteins. PLoS One 9:e116003. doi:10.1371/journal.pone.0116003

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nizhnikov AA, Ryzhova TA, Volkov KV, Zadorsky SP, Sopova JV, Inge-Vechtomov SG, Galkin AP (2016) Interaction of prions causes heritable traits in Saccharomyces cerevisiae. PLoS Genet 12:e1006504. doi:10.1371/journal.pgen.1006504

    Article  PubMed  PubMed Central  Google Scholar 

  27. Park SK, Hong JY, Arslan F, Kanneganti V, Patel B, Tietsort A, Tank EMH, Li X, Barmada SJ, Liebman SW (2017) Overexpression of the essential Sis1 chaperone reduces TDP-43 effects on toxicity and proteolysis. PLoS Genet 13:e1006805. doi:10.1371/journal.pgen.1006805

    Article  PubMed  PubMed Central  Google Scholar 

  28. Plotnikova TA, Selyakh IO, Kalebina TS, Kulaev IS (2006) Bgl2p and Gas1p are the major glucan transferases forming the molecular ensemble of yeast cell wall. Dokl Biochem Biophys 409:244–247

    CAS  Article  PubMed  Google Scholar 

  29. Prusiner SB (1982) Novel proteinaceous infections particles cause scrapie. Science 216:136–144

    CAS  Article  PubMed  Google Scholar 

  30. Ragni E, Fontaine T, Gissi C, Latgè JP, Popolo L (2007) The Gas family of proteins of Saccharomyces cerevisiae: characterization and evolutionary analysis. Yeast 24:297–308. doi:10.1002/yea.1473

    CAS  Article  PubMed  Google Scholar 

  31. Ramanagoudr-Bhojappa R, Blair LP, Tackett AJ, Raney KD (2013) Physical and functional interaction between yeast Pif1 helicase and Rim1 single-stranded DNA binding protein. Nucleic Acids Res 41:1029–1046. doi:10.1093/nar/gks1088

    CAS  Article  PubMed  Google Scholar 

  32. Robinson LS, Ashman EM, Hultgren SJ, Chapman MR (2006) Secretion of curli fibre subunits is mediated by the outer membrane-localized CsgG protein. Mol Microbiol 59:870–881. doi:10.1111/j.1365-2958.2005.04997

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Saarikangas J, Barral Y (2016) Protein aggregation as a mechanism of adaptive cellular responses. Curr Genet 62:711–724. doi:10.1007/s00294-016-0596-0

    CAS  Article  PubMed  Google Scholar 

  34. Sarto-Jackson I, Tomaska L (2016) How to bake a brain: yeast as a model neuron. Curr Genet 62:347–370. doi:10.1007/s00294-015-0554-2

    CAS  Article  PubMed  Google Scholar 

  35. Schwartz K, Boles BR (2013) Microbial amyloids-functions and interactions within the host. Curr Opin Microbiol 16:93–99. doi:10.1016/j.mib.2012.12.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Si K, Lindquist S, Kandel ER (2003) A neuronal isoform of the aplysia CPEB has prion-like properties. Cell 115:879–891

    CAS  Article  PubMed  Google Scholar 

  37. Sipe JD, Benson MD, Buxbaum JN, Ikeda S, Merlini G et al (2012) Amyloid fibril protein nomenclature: 2012 recommendations from the Nomenclature Committee of the International Society of Amyloidosis. Amyloid 19:167–170. doi:10.3109/13506129.2012.734345

    CAS  Article  PubMed  Google Scholar 

  38. Sivanathan V, Hochschild A (2012) Generating extracellular amyloid aggregates using E. coli cells. Genes Dev 26:2659–2667. doi:10.1101/gad.205310.112

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Sivanathan V, Hochschild A (2013) A bacterial export system for generating extracellular amyloid aggregates. Nat Protoc 8:1381–1390. doi:10.1038/nprot.2013.081

    Article  PubMed  PubMed Central  Google Scholar 

  40. Teng PK, Eisenberg D (2009) Short protein segments can drive a non-fibrillizing protein into the amyloid state. Protein Eng Des Sel 22:531–536. doi:10.1093/protein/gzp037

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Tsolis AC, Papandreou NC, Iconomidou VA, Hamodrakas SJ (2013) A consensus method for the prediction of “aggregation-prone” peptides in globular proteins. PLoS One 8(1):e54175

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Urakov VN, Vishnevskaya AB, Alexandrov IM, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD (2010) Interdependence of amyloid formation in yeast: implications for polyglutamine disorders and biological functions. Prion 4:45–52

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Vandenbosch D, Canck E, Dhondt I, Rigole P, Nelis H, Coenye T (2013) Genomewide screening for genes involved in biofilm formation and miconazole susceptibility in Saccharomyces cerevisiae. FEMS Yeast Res 13:720–730. doi:10.1111/1567-1364.12071

    CAS  Article  PubMed  Google Scholar 

  44. Wickner RB (1994) [URE3] as an altered Ure2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264:566–569

    CAS  Article  PubMed  Google Scholar 

  45. Yuga M, Gomi K, Klionsky DJ, Shintani T (2011) Aspartyl aminopeptidase is imported from the cytoplasm to the vacuole by selective autophagy in Saccharomyces cerevisiae. J Biol Chem 286:13704–13713. doi:10.1074/jbc.M110.173906

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. A.A. Aleksandrov for critical reading of the manuscript. Special thanks go to Dr. A. Hochschild for providing the bacterial C-DAG system. The authors acknowledge St. Petersburg State University for opportunity to use facilities of the Research Resource Center for Molecular and Cell Technologies and the Resource Centers “CHROMAS” of SPbSU. This work was partially supported by the grant of SPbSU to A.P.G. and by the Russian Foundation for Basic Research (14-04-01463to A.P.G. and 16-34-60153 to A.A.N). The experiments on proteomic screening were supported by the Russian Science Foundation 14-50-00069 to SPbSU.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexey P. Galkin.

Additional information

Communicated by M. Kupiec.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ryzhova, T.A., Sopova, J.V., Zadorsky, S.P. et al. Screening for amyloid proteins in the yeast proteome. Curr Genet 64, 469–478 (2018). https://doi.org/10.1007/s00294-017-0759-7

Download citation

Keywords

  • Amyloid
  • Prion
  • Yeast
  • Proteomic screen
  • Gas1
  • Ygp1