Skip to main content

Investigating the role(s) of SufT and the domain of unknown function 59 (DUF59) in the maturation of iron–sulfur proteins

Abstract

Comprehending biology at the molecular and systems levels is predicated upon understanding the functions of proteins. Proteins are typically composed of one or more functional moieties termed domains. Members of Bacteria, Eukarya, and Archaea utilize proteins containing a domain of unknown function (DUF) 59. Proteins requiring iron–sulfur (FeS) clusters containing cofactors are necessary for nearly all organisms making the assembly of functional FeS proteins essential. Recently, studies in eukaryotic and bacterial organisms have shown that proteins containing a DUF59, or those composed solely of DUF59, function in FeS protein maturation and/or intracellular Fe homeostasis. Herein, we review the current literature, discuss potential roles for DUF59, and address future studies that will help advance the field.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Figure modified from Mashruwala et al. (2016a)

Fig. 3

References

  • Agar JN, Krebs C, Frazzon J, Huynh BH, Dean DR, Johnson MK (2000) IscU as a scaffold for iron–sulfur cluster biosynthesis: sequential assembly of [2Fe-2S] and [4Fe-4S] clusters in IscU. Biochemistry 39:7856–7862

    CAS  Article  PubMed  Google Scholar 

  • Almeida MS, Herrmann T, Peti W, Wilson IA, Wuthrich K (2005) NMR structure of the conserved hypothetical protein TM0487 from Thermotoga maritima: implications for 216 homologous DUF59 proteins. Protein Sci 14:2880–2886. doi:10.1110/ps.051755805

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Angelini S, Gerez C, Ollagnier-de Choudens S, Sanakis Y, Fontecave M, Barras F, Py B (2008) NfuA, a new factor required for maturing Fe/S proteins in Escherichia coli under oxidative stress and iron starvation conditions. J Biol Chem 283:14084–14091

    CAS  Article  PubMed  Google Scholar 

  • Balk J, Pierik AJ, Netz DJ, Muhlenhoff U, Lill R (2004) The hydrogenase-like Nar1p is essential for maturation of cytosolic and nuclear iron–sulphur proteins. EMBO J 23:2105–2115

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Balk J, Aguilar Netz DJ, Tepper K, Pierik AJ, Lill R (2005) The essential WD40 protein Cia1 is involved in a late step of cytosolic and nuclear iron–sulfur protein assembly. Mol Cell Biol 25:10833–10841

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Bateman A, Coggill P, Finn RD (2010) DUFs: families in search of function. Acta Crystallogr Sect F Struct Biol Cryst Commun 66:1148–1152. doi:10.1107/S1744309110001685

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Beinert H, Holm RH, Munck E (1997) Iron–sulfur clusters: nature’s modular, multipurpose structures. Science 277:653–659

    CAS  Article  PubMed  Google Scholar 

  • Boyd JM, Pierik AJ, Netz DJ, Lill R, Downs DM (2008) Bacterial ApbC can bind and effectively transfer iron–sulfur clusters. Biochemistry 47:8195–8202

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Brancaccio D, Gallo A, Mikolajczyk M, Zovo K, Palumaa P, Novellino E, Piccioli M, Ciofi-Baffoni S, Banci L (2014) Formation of [4Fe–4S] clusters in the mitochondrial iron–sulfur cluster assembly machinery. J Am Chem Soc 136:16240–16250. doi:10.1021/ja507822j

    CAS  Article  PubMed  Google Scholar 

  • Bych K, Kerscher S, Netz DJ, Pierik AJ, Zwicker K, Huynen MA, Lill R, Brandt U, Balk J (2008) The iron–sulphur protein Ind1 is required for effective complex I assembly. EMBO J 27:1736–1746

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Chahal HK, Outten FW (2012) Separate FeS scaffold and carrier functions for SufB(2)C(2) and SufA during in vitro maturation of [2Fe2S] Fdx. J Inorg Biochem 116:126–134. doi:10.1016/j.jinorgbio.2012.06.008

    CAS  Article  PubMed  Google Scholar 

  • Chandramouli K, Johnson MK (2006) HscA and HscB stimulate [2Fe–2S] cluster transfer from IscU to apoferredoxin in an ATP-dependent reaction. Biochemistry 45:11087–11095

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Chen KE, Richards AA, Ariffin JK, Ross IL, Sweet MJ, Kellie S, Kobe B, Martin JL (2012) The mammalian DUF59 protein Fam96a forms two distinct types of domain-swapped dimer. Acta Crystallogr D Biol Crystallogr 68:637–648. doi:10.1107/S0907444912006592

    CAS  Article  PubMed  Google Scholar 

  • Djaman O, Outten FW, Imlay JA (2004) Repair of oxidized iron–sulfur clusters in Escherichia coli. J Biol Chem 279(43):44590–44599

    CAS  Article  PubMed  Google Scholar 

  • Dutkiewicz R, Schilke B, Cheng S, Knieszner H, Craig EA, Marszalek J (2004) Sequence-specific interaction between mitochondrial Fe–S scaffold protein Isu and Hsp70 Ssq1 is essential for their in vivo function. J Biol Chem 279:29167–29174. doi:10.1074/jbc.M402947200

    CAS  Article  PubMed  Google Scholar 

  • Gancedo C, Flores CL, Gancedo JM (2016) The expanding landscape of moonlighting proteins in yeasts. Microbiol Mol Biol Rev 80:765–777. doi:10.1128/MMBR.00012-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Gelling C, Dawes IW, Richhardt N, Lill R, Muhlenhoff U (2008) Mitochondrial Iba57p is required for Fe/S cluster formation on aconitase and activation of radical SAM enzymes. Mol Cell Biol 28:1851–1861

    CAS  Article  PubMed  Google Scholar 

  • Goodacre NF, Gerloff DL, Uetz P (2013) Protein domains of unknown function are essential in bacteria. MBio 5:e00744-13. doi:10.1128/mBio.00744-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta V, Sendra M, Naik SG, Chahal HK, Huynh BH, Outten FW, Fontecave M, Ollagnier de Choudens S (2009) Native Escherichia coli SufA, coexpressed with SufBCDSE, purifies as a [2Fe–2S] protein and acts as an Fe–S transporter to Fe–S target enzymes. J Am Chem Soc 131:6149–6153

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Jacobson MR, Cash VL, Weiss MC, Laird NF, Newton WE, Dean DR (1989) Biochemical and genetic analysis of the nifUSVWZM cluster from Azotobacter vinelandii. Mol Gen Genet 219:49–57

    CAS  Article  PubMed  Google Scholar 

  • Jang S, Imlay JA (2007) Micromolar intracellular hydrogen peroxide disrupts metabolism by damaging iron–sulfur enzymes. J Biol Chem 282:929–937

    CAS  Article  PubMed  Google Scholar 

  • Johnson DC, Dean DR, Smith AD, Johnson MK (2005) Structure, function, and formation of biological iron–sulfur clusters. Annu Rev Biochem 74:247–281

    CAS  Article  PubMed  Google Scholar 

  • Kaut A, Lange H, Diekert K, Kispal G, Lill R (2000) Isa1p is a component of the mitochondrial machinery for maturation of cellular iron–sulfur proteins and requires conserved cysteine residues for function. J Biol Chem 275:15955–15961

    CAS  Article  PubMed  Google Scholar 

  • Keyer K, Imlay JA (1996) Superoxide accelerates DNA damage by elevating free-iron levels. Proc Natl Acad Sci USA 93:13635–13640

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Kim JH, Bothe JR, Frederick RO, Holder JC, Markley JL (2014) Role of IscX in iron–sulfur cluster biogenesis in Escherichia coli. J Am Chem Soc 136:7933–7942. doi:10.1021/ja501260h

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Layer G, Gaddam SA, Ayala-Castro CN, Ollagnier-de Choudens S, Lascoux D, Fontecave M, Outten FW (2007) SufE transfers sulfur from SufS to SufB for iron–sulfur cluster assembly. J Biol Chem 282:13342–13350. doi:10.1074/jbc.M608555200

    CAS  Article  PubMed  Google Scholar 

  • Lezhneva L, Amann K, Meurer J (2004) The universally conserved HCF101 protein is involved in assembly of [4Fe–4S]-cluster-containing complexes in Arabidopsis thaliana chloroplasts. Plant J 37:174–185

    CAS  Article  PubMed  Google Scholar 

  • Li H, Outten CE (2012) Monothiol CGFS glutaredoxins and BolA-like proteins: [2Fe–2S] binding partners in iron homeostasis. Biochemistry 51:4377–4389. doi:10.1021/bi300393z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Lill R (2009) Function and biogenesis of iron–sulphur proteins. Nature 460:831–838. doi:10.1038/nature08301

    CAS  Article  PubMed  Google Scholar 

  • Lill R, Dutkiewicz R, Freibert SA, Heidenreich T, Mascarenhas J, Netz DJ, Paul VD, Pierik AJ, Richter N, Stumpfig M, Srinivasan V, Stehling O, Muhlenhoff U (2015) The role of mitochondria and the CIA machinery in the maturation of cytosolic and nuclear iron–sulfur proteins. Eur J Cell Biol 94:280–291. doi:10.1016/j.ejcb.2015.05.002

    CAS  Article  PubMed  Google Scholar 

  • Loiseau L, Ollagnier-de-Choudens S, Nachin L, Fontecave M, Barras F (2003) Biogenesis of Fe–S cluster by the bacterial Suf system: SufS and SufE form a new type of cysteine desulfurase. J Biol Chem 278:38352–38359

    CAS  Article  PubMed  Google Scholar 

  • Loiseau L, Gerez C, Bekker M, Ollagnier-de Choudens S, Py B, Sanakis Y, Teixeira de Mattos J, Fontecave M, Barras F (2007) ErpA, an iron–sulfur (Fe–S) protein of the A-type essential for respiratory metabolism in Escherichia coli. Proc Natl Acad Sci USA 104:13626–13631

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Luo D, Bernard DG, Balk J, Hai H, Cui X (2012) The DUF59 family gene AE7 acts in the cytosolic iron–sulfur cluster assembly pathway to maintain nuclear genome integrity in Arabidopsis. Plant Cell 24:4135–4148. doi:10.1105/tpc.112.102608

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Maier RJ, Moshiri F (2000) Role of the Azotobacter vinelandii nitrogenase-protective shethna protein in preventing oxygen-mediated cell death. J Bacteriol 182:3854–3857

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Mapolelo DT, Zhang B, Naik SG, Huynh BH, Johnson MK (2012) Spectroscopic and functional characterization of iron–sulfur cluster-bound forms of Azotobacter vinelandii (Nif)IscA. Biochemistry 51:8071–8084. doi:10.1021/bi3006658

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Maringanti S, Imlay JA (1999) An intracellular iron chelator pleiotropically suppresses enzymatic and growth defects of superoxide dismutase-deficient Escherichia coli. J Bacteriol 181:3792–3802

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mashruwala AA, Boyd JM (2017) The Staphylococcus aureus SrrAB regulatory system modulates hydrogen peroxide resistance factors, which imparts protection to aconitase during aerobic growth. PLoS One 12:e0170283. doi:10.1371/journal.pone.0170283

    Article  PubMed  PubMed Central  Google Scholar 

  • Mashruwala AA, Pang YY, Rosario-Cruz Z, Chahal HK, Benson MA, Mike LA, Skaar EP, Torres VJ, Nauseef WM, Boyd JM (2015) Nfu facilitates the maturation of iron–sulfur proteins and participates in virulence in Staphylococcus aureus. Mol Microbiol 95:383–409. doi:10.1111/mmi.12860

    CAS  Article  PubMed  Google Scholar 

  • Mashruwala AA, Bhatt S, Poudel S, Boyd ES, Boyd JM (2016a) The DUF59 containing protein SufT is involved in the maturation of iron–sulfur (FeS) proteins during conditions of high FeS cofactor demand in Staphylococcus aureus. PLoS Genet 12:e1006233. doi:10.1371/journal.pgen.1006233

    Article  PubMed  PubMed Central  Google Scholar 

  • Mashruwala AA, Roberts CA, Bhatt S, May KL, Carroll RK, Shaw LN, Boyd JM (2016b) Staphylococcus aureus SufT: an essential iron–sulfur cluster assembly factor in cells experiencing a high-demand for lipoic acid. Mol Microbiol. doi:10.1111/mmi.13539

    PubMed  PubMed Central  Google Scholar 

  • McKenzie RM, Henry LG, Boutrin MC, Ximinies A, Fletcher HM (2016) Role of the Porphyromonas gingivalis iron-binding protein PG1777 in oxidative stress resistance. Microbiology 162:256–267. doi:10.1099/mic.0.000213

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Melber A, Na U, Vashisht A, Weiler BD, Lill R, Wohlschlegel JA, Winge DR (2016) Role of Nfu1 and Bol3 in iron–sulfur cluster transfer to mitochondrial clients. Elife. doi:10.7554/eLife.15991

    PubMed  PubMed Central  Google Scholar 

  • Muhlenhoff U, Gerber J, Richhardt N, Lill R (2003) Components involved in assembly and dislocation of iron–sulfur clusters on the scaffold protein Isu1p. EMBO J 22:4815–4825

    Article  PubMed  PubMed Central  Google Scholar 

  • Muhlenhoff U, Richter N, Pines O, Pierik AJ, Lill R (2011) Specialized function of yeast Isa1 and Isa2 proteins in the maturation of mitochondrial [4Fe–4S] proteins. J Biol Chem 286:41205–41216. doi:10.1074/jbc.M111.296152

    Article  PubMed  PubMed Central  Google Scholar 

  • Netz DJ, Pierik AJ, Stumpfig M, Muhlenhoff U, Lill R (2007) The Cfd1-Nbp35 complex acts as a scaffold for iron–sulfur protein assembly in the yeast cytosol. Nat Chem Biol 3:278–286

    CAS  Article  PubMed  Google Scholar 

  • Netz DJ, Stumpfig M, Dore C, Muhlenhoff U, Pierik AJ, Lill R (2010) Tah18 transfers electrons to Dre2 in cytosolic iron–sulfur protein biogenesis. Nat Chem Biol 6:758–765. doi:10.1038/nchembio.432

    CAS  Article  PubMed  Google Scholar 

  • Netz DJ, Mascarenhas J, Stehling O, Pierik AJ, Lill R (2014) Maturation of cytosolic and nuclear iron–sulfur proteins. Trends Cell Biol 24:303–312. doi:10.1016/j.tcb.2013.11.005

    CAS  Article  PubMed  Google Scholar 

  • Olivera ER, Minambres B, Garcia B, Muniz C, Moreno MA, Ferrandez A, Diaz E, Garcia JL, Luengo JM (1998) Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: the phenylacetyl-CoA catabolon. Proc Natl Acad Sci USA 95:6419–6424

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Ollagnier-de Choudens S, Fontecave M (1999) The lipoate synthase from Escherichia coli is an iron–sulfur protein. FEBS Lett 453:25–28

    CAS  Article  PubMed  Google Scholar 

  • Ollagnier-de-Choudens S, Mattioli T, Takahashi Y, Fontecave M (2001) Iron–sulfur cluster assembly: characterization of IscA and evidence for a specific and functional complex with ferredoxin. J Biol Chem 276:22604–22607

    CAS  Article  PubMed  Google Scholar 

  • Ouyang B, Wang L, Wan S, Luo Y, Wang L, Lin J, Xia B (2013) Solution structure of monomeric human FAM96A. J Biomol NMR 56:387–392. doi:10.1007/s10858-013-9746-6

    CAS  Article  PubMed  Google Scholar 

  • Pastore A, Puccio H (2013) Frataxin: a protein in search for a function. J Neurochem 126(Suppl 1):43–52. doi:10.1111/jnc.12220

    CAS  Article  PubMed  Google Scholar 

  • Perez-Perez JM, Candela H, Micol JL (2009) Understanding synergy in genetic interactions. Trends Genet 25:368–376. doi:10.1016/j.tig.2009.06.004

    CAS  Article  PubMed  Google Scholar 

  • Py B, Barras F (2010) Building Fe–S proteins: bacterial strategies. Nat Rev Microbiol 8:436–446. doi:10.1038/nrmicro2356

    CAS  Article  PubMed  Google Scholar 

  • Roberts CA, Al-Tameemi HM, Mashruwala AA, Rosario-Cruz Z, Chauhan U, Sause WE, Torres VJ, Belden WJ, Boyd JM (2017) The Suf iron–sulfur cluster biosynthetic system is essential in Staphylococcus aureus and decreased Suf function results in global metabolic defects and reduced survival in human neutrophils. Infect Immun. doi:10.1128/IAI.00100-17

    Google Scholar 

  • Rosario-Cruz Z, Boyd JM (2016) Physiological roles of bacillithiol in intracellular metal processing. Curr Genet 62:59–65. doi:10.1007/s00294-015-0511-0

    CAS  Article  PubMed  Google Scholar 

  • Rosario-Cruz Z, Chahal HK, Mike LA, Skaar EP, Boyd JM (2015) Bacillithiol has a role in Fe–S cluster biogenesis in Staphylococcus aureus. Mol Microbiol 98:218–242. doi:10.1111/mmi.13115

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Saini A, Mapolelo DT, Chahal HK, Johnson MK, Outten FW (2010) SufD and SufC ATPase activity are required for iron acquisition during in vivo Fe–S cluster formation on SufB. Biochemistry 49:9402–9412. doi:10.1021/bi1011546

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Sasaki S, Minamisawa K, Mitsui H (2016) A Sinorhizobium meliloti RpoH-regulated gene is involved in iron–sulfur protein metabolism and effective plant symbiosis under intrinsic iron limitation. J Bacteriol 198:2297–2306. doi:10.1128/JB.00287-16

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Schwartz CJ, Djaman O, Imlay JA, Kiley PJ (2000) The cysteine desulfurase, IscS, has a major role in in vivo Fe–S cluster formation in Escherichia coli. Proc Natl Acad Sci USA 97:9009–9014

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Schwenkert S, Netz DJ, Frazzon J, Pierik AJ, Bill E, Gross J, Lill R, Meurer J (2010) Chloroplast HCF101 is a scaffold protein for [4Fe–4S] cluster assembly. Biochem J 425:207–214. doi:10.1042/BJ20091290

    CAS  Article  Google Scholar 

  • Selbach BP, Chung AH, Scott AD, George SJ, Cramer SP, Dos Santos PC (2014) Fe–S cluster biogenesis in Gram-positive bacteria: SufU is a zinc-dependent sulfur transfer protein. Biochemistry 53:152–160. doi:10.1021/bi4011978

    CAS  Article  PubMed  Google Scholar 

  • Sheftel AD, Stehling O, Pierik AJ, Elsasser HP, Muhlenhoff U, Webert H, Hobler A, Hannemann F, Bernhardt R, Lill R (2010) Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. Proc Natl Acad Sci USA 107:11775–11780. doi:10.1073/pnas.1004250107

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Srinivasan V, Pierik AJ, Lill R (2014) Crystal structures of nucleotide-free and glutathione-bound mitochondrial ABC transporter Atm1. Science 343:1137–1140. doi:10.1126/science.1246729

    CAS  Article  PubMed  Google Scholar 

  • Stehling O, Vashisht AA, Mascarenhas J, Jonsson ZO, Sharma T, Netz DJ, Pierik AJ, Wohlschlegel JA, Lill R (2012) MMS19 assembles iron–sulfur proteins required for DNA metabolism and genomic integrity. Science 337:195–199. doi:10.1126/science.1219723

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Stehling O, Mascarenhas J, Vashisht AA, Sheftel AD, Niggemeyer B, Rosser R, Pierik AJ, Wohlschlegel JA, Lill R (2013) Human CIA2A-FAM96A and CIA2B-FAM96B integrate iron homeostasis and maturation of different subsets of cytosolic-nuclear iron–sulfur proteins. Cell Metab 18:187–198. doi:10.1016/j.cmet.2013.06.015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi Y, Tokumoto U (2002) A third bacterial system for the assembly of iron–sulfur clusters with homologs in archaea and plastids. J Biol Chem 277:28380–28393

    CAS  Article  PubMed  Google Scholar 

  • Tsaousis AD, Gentekaki E, Eme L, Gaston D, Roger AJ (2014) Evolution of the cytosolic iron–sulfur cluster assembly machinery in Blastocystis species and other microbial eukaryotes. Eukaryot Cell 13:143–153. doi:10.1128/EC.00158-13

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Uzarska MA, Dutkiewicz R, Freibert SA, Lill R, Muhlenhoff U (2013) The mitochondrial Hsp70 chaperone Ssq1 facilitates Fe/S cluster transfer from Isu1 to Grx5 by complex formation. Mol Biol Cell 24:1830–1841. doi:10.1091/mbc.E12-09-0644

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Uzarska MA, Nasta V, Weiler BD, Spantgar F, Ciofi-Baffoni S, Saviello MR, Gonnelli L, Muhlenhoff U, Banci L, Lill R (2016) Mitochondrial Bol1 and Bol3 function as assembly factors for specific iron–sulfur proteins. Elife. doi:10.7554/eLife.16673

    PubMed  PubMed Central  Google Scholar 

  • Waller JC, Alvarez S, Naponelli V, Lara-Nunez A, Blaby IK, Da Silva V, Ziemak MJ, Vickers TJ, Beverley SM, Edison AS, Rocca JR, Gregory JF 3rd, de Crecy-Lagard V, Hanson AD (2010) A role for tetrahydrofolates in the metabolism of iron–sulfur clusters in all domains of life. Proc Natl Acad Sci USA 107:10412–10417

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Webert H, Freibert SA, Gallo A, Heidenreich T, Linne U, Amlacher S, Hurt E, Muhlenhoff U, Banci L, Lill R (2014) Functional reconstitution of mitochondrial Fe/S cluster synthesis on Isu1 reveals the involvement of ferredoxin. Nat Commun 5:5013. doi:10.1038/ncomms6013

    CAS  Article  PubMed  Google Scholar 

  • Weerapana E, Wang C, Simon GM, Richter F, Khare S, Dillon MB, Bachovchin DA, Mowen K, Baker D, Cravatt BF (2010) Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468:790–795. doi:10.1038/nature09472

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Wiedemann N, Urzica E, Guiard B, Muller H, Lohaus C, Meyer HE, Ryan MT, Meisinger C, Muhlenhoff U, Lill R, Pfanner N (2006) Essential role of Isd11 in mitochondrial iron–sulfur cluster synthesis on Isu scaffold proteins. EMBO J 25:184–195. doi:10.1038/sj.emboj.7600906

    CAS  Article  PubMed  Google Scholar 

  • Yeung N, Gold B, Liu NL, Prathapam R, Sterling HJ, Willams ER, Butland G (2011) The E. coli monothiol glutaredoxin GrxD forms homodimeric and heterodimeric FeS cluster containing complexes. Biochemistry 50:8957–8969. doi:10.1021/bi2008883

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Yuvaniyama P, Agar JN, Cash VL, Johnson MK, Dean DR (2000) NifS-directed assembly of a transient [2Fe–2S] cluster within the NifU protein. Proc Natl Acad Sci USA 97:599–604

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Zheng L, White RH, Cash VL, Jack RF, Dean DR (1993) Cysteine desulfurase activity indicates a role for NIFS in metallocluster biosynthesis. Proc Natl Acad Sci USA 90:2754–2758

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Zheng L, Cash VL, Flint DH, Dean DR (1998) Assembly of iron–sulfur clusters. Identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii. J Biol Chem 273:13264–13272

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The Boyd lab is supported by Rutgers University, the Charles and Johanna Busch foundation, and USDA MRF project NE-1028. A.A.M. is supported by the Douglas Eveleigh fellowship from the Microbial Biology Graduate Program and an Excellence Fellowship from Rutgers University. We thank Hassan Al-Tameemi for his careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey M. Boyd.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mashruwala, A.A., Boyd, J.M. Investigating the role(s) of SufT and the domain of unknown function 59 (DUF59) in the maturation of iron–sulfur proteins. Curr Genet 64, 9–16 (2018). https://doi.org/10.1007/s00294-017-0716-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-017-0716-5

Keywords

  • Iron
  • Sulfur
  • FeS
  • Cluster
  • DUF59
  • SufT
  • Suf
  • CIA2