Investigating the role(s) of SufT and the domain of unknown function 59 (DUF59) in the maturation of iron–sulfur proteins

Review

Abstract

Comprehending biology at the molecular and systems levels is predicated upon understanding the functions of proteins. Proteins are typically composed of one or more functional moieties termed domains. Members of Bacteria, Eukarya, and Archaea utilize proteins containing a domain of unknown function (DUF) 59. Proteins requiring iron–sulfur (FeS) clusters containing cofactors are necessary for nearly all organisms making the assembly of functional FeS proteins essential. Recently, studies in eukaryotic and bacterial organisms have shown that proteins containing a DUF59, or those composed solely of DUF59, function in FeS protein maturation and/or intracellular Fe homeostasis. Herein, we review the current literature, discuss potential roles for DUF59, and address future studies that will help advance the field.

Keywords

Iron Sulfur FeS Cluster DUF59 SufT Suf CIA2 

References

  1. Agar JN, Krebs C, Frazzon J, Huynh BH, Dean DR, Johnson MK (2000) IscU as a scaffold for iron–sulfur cluster biosynthesis: sequential assembly of [2Fe-2S] and [4Fe-4S] clusters in IscU. Biochemistry 39:7856–7862CrossRefPubMedGoogle Scholar
  2. Almeida MS, Herrmann T, Peti W, Wilson IA, Wuthrich K (2005) NMR structure of the conserved hypothetical protein TM0487 from Thermotoga maritima: implications for 216 homologous DUF59 proteins. Protein Sci 14:2880–2886. doi:10.1110/ps.051755805 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Angelini S, Gerez C, Ollagnier-de Choudens S, Sanakis Y, Fontecave M, Barras F, Py B (2008) NfuA, a new factor required for maturing Fe/S proteins in Escherichia coli under oxidative stress and iron starvation conditions. J Biol Chem 283:14084–14091CrossRefPubMedGoogle Scholar
  4. Balk J, Pierik AJ, Netz DJ, Muhlenhoff U, Lill R (2004) The hydrogenase-like Nar1p is essential for maturation of cytosolic and nuclear iron–sulphur proteins. EMBO J 23:2105–2115CrossRefPubMedPubMedCentralGoogle Scholar
  5. Balk J, Aguilar Netz DJ, Tepper K, Pierik AJ, Lill R (2005) The essential WD40 protein Cia1 is involved in a late step of cytosolic and nuclear iron–sulfur protein assembly. Mol Cell Biol 25:10833–10841CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bateman A, Coggill P, Finn RD (2010) DUFs: families in search of function. Acta Crystallogr Sect F Struct Biol Cryst Commun 66:1148–1152. doi:10.1107/S1744309110001685 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Beinert H, Holm RH, Munck E (1997) Iron–sulfur clusters: nature’s modular, multipurpose structures. Science 277:653–659CrossRefPubMedGoogle Scholar
  8. Boyd JM, Pierik AJ, Netz DJ, Lill R, Downs DM (2008) Bacterial ApbC can bind and effectively transfer iron–sulfur clusters. Biochemistry 47:8195–8202CrossRefPubMedPubMedCentralGoogle Scholar
  9. Brancaccio D, Gallo A, Mikolajczyk M, Zovo K, Palumaa P, Novellino E, Piccioli M, Ciofi-Baffoni S, Banci L (2014) Formation of [4Fe–4S] clusters in the mitochondrial iron–sulfur cluster assembly machinery. J Am Chem Soc 136:16240–16250. doi:10.1021/ja507822j CrossRefPubMedGoogle Scholar
  10. Bych K, Kerscher S, Netz DJ, Pierik AJ, Zwicker K, Huynen MA, Lill R, Brandt U, Balk J (2008) The iron–sulphur protein Ind1 is required for effective complex I assembly. EMBO J 27:1736–1746CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chahal HK, Outten FW (2012) Separate FeS scaffold and carrier functions for SufB(2)C(2) and SufA during in vitro maturation of [2Fe2S] Fdx. J Inorg Biochem 116:126–134. doi:10.1016/j.jinorgbio.2012.06.008 CrossRefPubMedGoogle Scholar
  12. Chandramouli K, Johnson MK (2006) HscA and HscB stimulate [2Fe–2S] cluster transfer from IscU to apoferredoxin in an ATP-dependent reaction. Biochemistry 45:11087–11095CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chen KE, Richards AA, Ariffin JK, Ross IL, Sweet MJ, Kellie S, Kobe B, Martin JL (2012) The mammalian DUF59 protein Fam96a forms two distinct types of domain-swapped dimer. Acta Crystallogr D Biol Crystallogr 68:637–648. doi:10.1107/S0907444912006592 CrossRefPubMedGoogle Scholar
  14. Djaman O, Outten FW, Imlay JA (2004) Repair of oxidized iron–sulfur clusters in Escherichia coli. J Biol Chem 279(43):44590–44599CrossRefPubMedGoogle Scholar
  15. Dutkiewicz R, Schilke B, Cheng S, Knieszner H, Craig EA, Marszalek J (2004) Sequence-specific interaction between mitochondrial Fe–S scaffold protein Isu and Hsp70 Ssq1 is essential for their in vivo function. J Biol Chem 279:29167–29174. doi:10.1074/jbc.M402947200 CrossRefPubMedGoogle Scholar
  16. Gancedo C, Flores CL, Gancedo JM (2016) The expanding landscape of moonlighting proteins in yeasts. Microbiol Mol Biol Rev 80:765–777. doi:10.1128/MMBR.00012-16 CrossRefPubMedGoogle Scholar
  17. Gelling C, Dawes IW, Richhardt N, Lill R, Muhlenhoff U (2008) Mitochondrial Iba57p is required for Fe/S cluster formation on aconitase and activation of radical SAM enzymes. Mol Cell Biol 28:1851–1861CrossRefPubMedGoogle Scholar
  18. Goodacre NF, Gerloff DL, Uetz P (2013) Protein domains of unknown function are essential in bacteria. MBio 5:e00744-13. doi:10.1128/mBio.00744-13 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gupta V, Sendra M, Naik SG, Chahal HK, Huynh BH, Outten FW, Fontecave M, Ollagnier de Choudens S (2009) Native Escherichia coli SufA, coexpressed with SufBCDSE, purifies as a [2Fe–2S] protein and acts as an Fe–S transporter to Fe–S target enzymes. J Am Chem Soc 131:6149–6153CrossRefPubMedPubMedCentralGoogle Scholar
  20. Jacobson MR, Cash VL, Weiss MC, Laird NF, Newton WE, Dean DR (1989) Biochemical and genetic analysis of the nifUSVWZM cluster from Azotobacter vinelandii. Mol Gen Genet 219:49–57CrossRefPubMedGoogle Scholar
  21. Jang S, Imlay JA (2007) Micromolar intracellular hydrogen peroxide disrupts metabolism by damaging iron–sulfur enzymes. J Biol Chem 282:929–937CrossRefPubMedGoogle Scholar
  22. Johnson DC, Dean DR, Smith AD, Johnson MK (2005) Structure, function, and formation of biological iron–sulfur clusters. Annu Rev Biochem 74:247–281CrossRefPubMedGoogle Scholar
  23. Kaut A, Lange H, Diekert K, Kispal G, Lill R (2000) Isa1p is a component of the mitochondrial machinery for maturation of cellular iron–sulfur proteins and requires conserved cysteine residues for function. J Biol Chem 275:15955–15961CrossRefPubMedGoogle Scholar
  24. Keyer K, Imlay JA (1996) Superoxide accelerates DNA damage by elevating free-iron levels. Proc Natl Acad Sci USA 93:13635–13640CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kim JH, Bothe JR, Frederick RO, Holder JC, Markley JL (2014) Role of IscX in iron–sulfur cluster biogenesis in Escherichia coli. J Am Chem Soc 136:7933–7942. doi:10.1021/ja501260h CrossRefPubMedPubMedCentralGoogle Scholar
  26. Layer G, Gaddam SA, Ayala-Castro CN, Ollagnier-de Choudens S, Lascoux D, Fontecave M, Outten FW (2007) SufE transfers sulfur from SufS to SufB for iron–sulfur cluster assembly. J Biol Chem 282:13342–13350. doi:10.1074/jbc.M608555200 CrossRefPubMedGoogle Scholar
  27. Lezhneva L, Amann K, Meurer J (2004) The universally conserved HCF101 protein is involved in assembly of [4Fe–4S]-cluster-containing complexes in Arabidopsis thaliana chloroplasts. Plant J 37:174–185CrossRefPubMedGoogle Scholar
  28. Li H, Outten CE (2012) Monothiol CGFS glutaredoxins and BolA-like proteins: [2Fe–2S] binding partners in iron homeostasis. Biochemistry 51:4377–4389. doi:10.1021/bi300393z CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lill R (2009) Function and biogenesis of iron–sulphur proteins. Nature 460:831–838. doi:10.1038/nature08301 CrossRefPubMedGoogle Scholar
  30. Lill R, Dutkiewicz R, Freibert SA, Heidenreich T, Mascarenhas J, Netz DJ, Paul VD, Pierik AJ, Richter N, Stumpfig M, Srinivasan V, Stehling O, Muhlenhoff U (2015) The role of mitochondria and the CIA machinery in the maturation of cytosolic and nuclear iron–sulfur proteins. Eur J Cell Biol 94:280–291. doi:10.1016/j.ejcb.2015.05.002 CrossRefPubMedGoogle Scholar
  31. Loiseau L, Ollagnier-de-Choudens S, Nachin L, Fontecave M, Barras F (2003) Biogenesis of Fe–S cluster by the bacterial Suf system: SufS and SufE form a new type of cysteine desulfurase. J Biol Chem 278:38352–38359CrossRefPubMedGoogle Scholar
  32. Loiseau L, Gerez C, Bekker M, Ollagnier-de Choudens S, Py B, Sanakis Y, Teixeira de Mattos J, Fontecave M, Barras F (2007) ErpA, an iron–sulfur (Fe–S) protein of the A-type essential for respiratory metabolism in Escherichia coli. Proc Natl Acad Sci USA 104:13626–13631CrossRefPubMedPubMedCentralGoogle Scholar
  33. Luo D, Bernard DG, Balk J, Hai H, Cui X (2012) The DUF59 family gene AE7 acts in the cytosolic iron–sulfur cluster assembly pathway to maintain nuclear genome integrity in Arabidopsis. Plant Cell 24:4135–4148. doi:10.1105/tpc.112.102608 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Maier RJ, Moshiri F (2000) Role of the Azotobacter vinelandii nitrogenase-protective shethna protein in preventing oxygen-mediated cell death. J Bacteriol 182:3854–3857CrossRefPubMedPubMedCentralGoogle Scholar
  35. Mapolelo DT, Zhang B, Naik SG, Huynh BH, Johnson MK (2012) Spectroscopic and functional characterization of iron–sulfur cluster-bound forms of Azotobacter vinelandii (Nif)IscA. Biochemistry 51:8071–8084. doi:10.1021/bi3006658 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Maringanti S, Imlay JA (1999) An intracellular iron chelator pleiotropically suppresses enzymatic and growth defects of superoxide dismutase-deficient Escherichia coli. J Bacteriol 181:3792–3802PubMedPubMedCentralGoogle Scholar
  37. Mashruwala AA, Boyd JM (2017) The Staphylococcus aureus SrrAB regulatory system modulates hydrogen peroxide resistance factors, which imparts protection to aconitase during aerobic growth. PLoS One 12:e0170283. doi:10.1371/journal.pone.0170283 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Mashruwala AA, Pang YY, Rosario-Cruz Z, Chahal HK, Benson MA, Mike LA, Skaar EP, Torres VJ, Nauseef WM, Boyd JM (2015) Nfu facilitates the maturation of iron–sulfur proteins and participates in virulence in Staphylococcus aureus. Mol Microbiol 95:383–409. doi:10.1111/mmi.12860 CrossRefPubMedGoogle Scholar
  39. Mashruwala AA, Bhatt S, Poudel S, Boyd ES, Boyd JM (2016a) The DUF59 containing protein SufT is involved in the maturation of iron–sulfur (FeS) proteins during conditions of high FeS cofactor demand in Staphylococcus aureus. PLoS Genet 12:e1006233. doi:10.1371/journal.pgen.1006233 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mashruwala AA, Roberts CA, Bhatt S, May KL, Carroll RK, Shaw LN, Boyd JM (2016b) Staphylococcus aureus SufT: an essential iron–sulfur cluster assembly factor in cells experiencing a high-demand for lipoic acid. Mol Microbiol. doi:10.1111/mmi.13539 PubMedGoogle Scholar
  41. McKenzie RM, Henry LG, Boutrin MC, Ximinies A, Fletcher HM (2016) Role of the Porphyromonas gingivalis iron-binding protein PG1777 in oxidative stress resistance. Microbiology 162:256–267. doi:10.1099/mic.0.000213 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Melber A, Na U, Vashisht A, Weiler BD, Lill R, Wohlschlegel JA, Winge DR (2016) Role of Nfu1 and Bol3 in iron–sulfur cluster transfer to mitochondrial clients. Elife. doi:10.7554/eLife.15991 PubMedPubMedCentralGoogle Scholar
  43. Muhlenhoff U, Gerber J, Richhardt N, Lill R (2003) Components involved in assembly and dislocation of iron–sulfur clusters on the scaffold protein Isu1p. EMBO J 22:4815–4825CrossRefPubMedPubMedCentralGoogle Scholar
  44. Muhlenhoff U, Richter N, Pines O, Pierik AJ, Lill R (2011) Specialized function of yeast Isa1 and Isa2 proteins in the maturation of mitochondrial [4Fe–4S] proteins. J Biol Chem 286:41205–41216. doi:10.1074/jbc.M111.296152 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Netz DJ, Pierik AJ, Stumpfig M, Muhlenhoff U, Lill R (2007) The Cfd1-Nbp35 complex acts as a scaffold for iron–sulfur protein assembly in the yeast cytosol. Nat Chem Biol 3:278–286CrossRefPubMedGoogle Scholar
  46. Netz DJ, Stumpfig M, Dore C, Muhlenhoff U, Pierik AJ, Lill R (2010) Tah18 transfers electrons to Dre2 in cytosolic iron–sulfur protein biogenesis. Nat Chem Biol 6:758–765. doi:10.1038/nchembio.432 CrossRefPubMedGoogle Scholar
  47. Netz DJ, Mascarenhas J, Stehling O, Pierik AJ, Lill R (2014) Maturation of cytosolic and nuclear iron–sulfur proteins. Trends Cell Biol 24:303–312. doi:10.1016/j.tcb.2013.11.005 CrossRefPubMedGoogle Scholar
  48. Olivera ER, Minambres B, Garcia B, Muniz C, Moreno MA, Ferrandez A, Diaz E, Garcia JL, Luengo JM (1998) Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: the phenylacetyl-CoA catabolon. Proc Natl Acad Sci USA 95:6419–6424CrossRefPubMedPubMedCentralGoogle Scholar
  49. Ollagnier-de Choudens S, Fontecave M (1999) The lipoate synthase from Escherichia coli is an iron–sulfur protein. FEBS Lett 453:25–28CrossRefPubMedGoogle Scholar
  50. Ollagnier-de-Choudens S, Mattioli T, Takahashi Y, Fontecave M (2001) Iron–sulfur cluster assembly: characterization of IscA and evidence for a specific and functional complex with ferredoxin. J Biol Chem 276:22604–22607CrossRefPubMedGoogle Scholar
  51. Ouyang B, Wang L, Wan S, Luo Y, Wang L, Lin J, Xia B (2013) Solution structure of monomeric human FAM96A. J Biomol NMR 56:387–392. doi:10.1007/s10858-013-9746-6 CrossRefPubMedGoogle Scholar
  52. Pastore A, Puccio H (2013) Frataxin: a protein in search for a function. J Neurochem 126(Suppl 1):43–52. doi:10.1111/jnc.12220 CrossRefPubMedGoogle Scholar
  53. Perez-Perez JM, Candela H, Micol JL (2009) Understanding synergy in genetic interactions. Trends Genet 25:368–376. doi:10.1016/j.tig.2009.06.004 CrossRefPubMedGoogle Scholar
  54. Py B, Barras F (2010) Building Fe–S proteins: bacterial strategies. Nat Rev Microbiol 8:436–446. doi:10.1038/nrmicro2356 CrossRefPubMedGoogle Scholar
  55. Roberts CA, Al-Tameemi HM, Mashruwala AA, Rosario-Cruz Z, Chauhan U, Sause WE, Torres VJ, Belden WJ, Boyd JM (2017) The Suf iron–sulfur cluster biosynthetic system is essential in Staphylococcus aureus and decreased Suf function results in global metabolic defects and reduced survival in human neutrophils. Infect Immun. doi:10.1128/IAI.00100-17 Google Scholar
  56. Rosario-Cruz Z, Boyd JM (2016) Physiological roles of bacillithiol in intracellular metal processing. Curr Genet 62:59–65. doi:10.1007/s00294-015-0511-0 CrossRefPubMedGoogle Scholar
  57. Rosario-Cruz Z, Chahal HK, Mike LA, Skaar EP, Boyd JM (2015) Bacillithiol has a role in Fe–S cluster biogenesis in Staphylococcus aureus. Mol Microbiol 98:218–242. doi:10.1111/mmi.13115 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Saini A, Mapolelo DT, Chahal HK, Johnson MK, Outten FW (2010) SufD and SufC ATPase activity are required for iron acquisition during in vivo Fe–S cluster formation on SufB. Biochemistry 49:9402–9412. doi:10.1021/bi1011546 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Sasaki S, Minamisawa K, Mitsui H (2016) A Sinorhizobium meliloti RpoH-regulated gene is involved in iron–sulfur protein metabolism and effective plant symbiosis under intrinsic iron limitation. J Bacteriol 198:2297–2306. doi:10.1128/JB.00287-16 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Schwartz CJ, Djaman O, Imlay JA, Kiley PJ (2000) The cysteine desulfurase, IscS, has a major role in in vivo Fe–S cluster formation in Escherichia coli. Proc Natl Acad Sci USA 97:9009–9014CrossRefPubMedPubMedCentralGoogle Scholar
  61. Schwenkert S, Netz DJ, Frazzon J, Pierik AJ, Bill E, Gross J, Lill R, Meurer J (2010) Chloroplast HCF101 is a scaffold protein for [4Fe–4S] cluster assembly. Biochem J 425:207–214. doi:10.1042/BJ20091290 CrossRefGoogle Scholar
  62. Selbach BP, Chung AH, Scott AD, George SJ, Cramer SP, Dos Santos PC (2014) Fe–S cluster biogenesis in Gram-positive bacteria: SufU is a zinc-dependent sulfur transfer protein. Biochemistry 53:152–160. doi:10.1021/bi4011978 CrossRefPubMedGoogle Scholar
  63. Sheftel AD, Stehling O, Pierik AJ, Elsasser HP, Muhlenhoff U, Webert H, Hobler A, Hannemann F, Bernhardt R, Lill R (2010) Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. Proc Natl Acad Sci USA 107:11775–11780. doi:10.1073/pnas.1004250107 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Srinivasan V, Pierik AJ, Lill R (2014) Crystal structures of nucleotide-free and glutathione-bound mitochondrial ABC transporter Atm1. Science 343:1137–1140. doi:10.1126/science.1246729 CrossRefPubMedGoogle Scholar
  65. Stehling O, Vashisht AA, Mascarenhas J, Jonsson ZO, Sharma T, Netz DJ, Pierik AJ, Wohlschlegel JA, Lill R (2012) MMS19 assembles iron–sulfur proteins required for DNA metabolism and genomic integrity. Science 337:195–199. doi:10.1126/science.1219723 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Stehling O, Mascarenhas J, Vashisht AA, Sheftel AD, Niggemeyer B, Rosser R, Pierik AJ, Wohlschlegel JA, Lill R (2013) Human CIA2A-FAM96A and CIA2B-FAM96B integrate iron homeostasis and maturation of different subsets of cytosolic-nuclear iron–sulfur proteins. Cell Metab 18:187–198. doi:10.1016/j.cmet.2013.06.015 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Takahashi Y, Tokumoto U (2002) A third bacterial system for the assembly of iron–sulfur clusters with homologs in archaea and plastids. J Biol Chem 277:28380–28393CrossRefPubMedGoogle Scholar
  68. Tsaousis AD, Gentekaki E, Eme L, Gaston D, Roger AJ (2014) Evolution of the cytosolic iron–sulfur cluster assembly machinery in Blastocystis species and other microbial eukaryotes. Eukaryot Cell 13:143–153. doi:10.1128/EC.00158-13 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Uzarska MA, Dutkiewicz R, Freibert SA, Lill R, Muhlenhoff U (2013) The mitochondrial Hsp70 chaperone Ssq1 facilitates Fe/S cluster transfer from Isu1 to Grx5 by complex formation. Mol Biol Cell 24:1830–1841. doi:10.1091/mbc.E12-09-0644 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Uzarska MA, Nasta V, Weiler BD, Spantgar F, Ciofi-Baffoni S, Saviello MR, Gonnelli L, Muhlenhoff U, Banci L, Lill R (2016) Mitochondrial Bol1 and Bol3 function as assembly factors for specific iron–sulfur proteins. Elife. doi:10.7554/eLife.16673 PubMedPubMedCentralGoogle Scholar
  71. Waller JC, Alvarez S, Naponelli V, Lara-Nunez A, Blaby IK, Da Silva V, Ziemak MJ, Vickers TJ, Beverley SM, Edison AS, Rocca JR, Gregory JF 3rd, de Crecy-Lagard V, Hanson AD (2010) A role for tetrahydrofolates in the metabolism of iron–sulfur clusters in all domains of life. Proc Natl Acad Sci USA 107:10412–10417CrossRefPubMedPubMedCentralGoogle Scholar
  72. Webert H, Freibert SA, Gallo A, Heidenreich T, Linne U, Amlacher S, Hurt E, Muhlenhoff U, Banci L, Lill R (2014) Functional reconstitution of mitochondrial Fe/S cluster synthesis on Isu1 reveals the involvement of ferredoxin. Nat Commun 5:5013. doi:10.1038/ncomms6013 CrossRefPubMedGoogle Scholar
  73. Weerapana E, Wang C, Simon GM, Richter F, Khare S, Dillon MB, Bachovchin DA, Mowen K, Baker D, Cravatt BF (2010) Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468:790–795. doi:10.1038/nature09472 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Wiedemann N, Urzica E, Guiard B, Muller H, Lohaus C, Meyer HE, Ryan MT, Meisinger C, Muhlenhoff U, Lill R, Pfanner N (2006) Essential role of Isd11 in mitochondrial iron–sulfur cluster synthesis on Isu scaffold proteins. EMBO J 25:184–195. doi:10.1038/sj.emboj.7600906 CrossRefPubMedGoogle Scholar
  75. Yeung N, Gold B, Liu NL, Prathapam R, Sterling HJ, Willams ER, Butland G (2011) The E. coli monothiol glutaredoxin GrxD forms homodimeric and heterodimeric FeS cluster containing complexes. Biochemistry 50:8957–8969. doi:10.1021/bi2008883 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Yuvaniyama P, Agar JN, Cash VL, Johnson MK, Dean DR (2000) NifS-directed assembly of a transient [2Fe–2S] cluster within the NifU protein. Proc Natl Acad Sci USA 97:599–604CrossRefPubMedPubMedCentralGoogle Scholar
  77. Zheng L, White RH, Cash VL, Jack RF, Dean DR (1993) Cysteine desulfurase activity indicates a role for NIFS in metallocluster biosynthesis. Proc Natl Acad Sci USA 90:2754–2758CrossRefPubMedPubMedCentralGoogle Scholar
  78. Zheng L, Cash VL, Flint DH, Dean DR (1998) Assembly of iron–sulfur clusters. Identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii. J Biol Chem 273:13264–13272CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Biochemistry and MicrobiologyRutgers, The State University of New JerseyNew BrunswickUSA
  2. 2.Department of Molecular BiologyPrinceton UniversityPrincetonUSA

Personalised recommendations