Skip to main content
Log in

The pleiotropic vegetative and sexual development phenotypes of Neurospora crassa arise from double mutants of the calcium signaling genes plc-1, splA2, and cpe-1

  • Original Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

We investigated phenotypes of the double mutants of the calcium (Ca2+) signaling genes plc-1, splA2, and cpe-1 encoding for a phospholipase C1 (PLC-1), a secretory phospholipase A2 (sPLA2), and a Ca2+/H+ exchanger (CPE-1), respectively, to understand the cell functions regulated by their genetic interactions. Mutants lacking plc-1 and either splA2 or cpe-1 exhibited numerous defects including reduced colonial growth, stunted aerial hyphae, premature conidiation on plates with delayed germination, inappropriate conidiation in submerged culture, and lesser mycelial pigmentation. Moreover, the ∆plc-1; ∆splA2 and ∆plc-1; ∆cpe-1 double mutants were female-sterile when crossed with wild type as the male parent. In addition, ∆plc-1, ∆splA2, and ∆cpe-1 single mutants displayed higher carotenoid accumulation and an increased level of intracellular reactive oxygen species (ROS). Therefore, the pleiotropic phenotype of the double mutants of plc-1, splA2, and cpe-1 suggested that the genetic interaction of these genes plays a critical role for normal vegetative and sexual development in N. crassa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1990) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  Google Scholar 

  • Avalos J, Corrochano LM (2013) Carotenoid biosynthesis in Neurospora. In: Kasbekar DP, McCluskey K (eds) Neurospora: genomics and molecular biology. Caister Academic Press, Norfolk, pp 227–241

    Google Scholar 

  • Barba-Ostria C, Lledías F, Georgellis D (2011) The Neurospora crassa DCC-1 protein, a putative histidine kinase, is required for normal sexual and asexual development and carotenogenesis. Eukaryot Cell 12:1733–1739

    Article  Google Scholar 

  • Barman A, Tamuli R (2015) Multiple cellular roles of Neurospora crassa plc-1, splA2, and cpe-1 in regulation of cytosolic free calcium, carotenoid accumulation, stress responses, and acquisition of thermotolerance. J Microbiol 53:226–235

    Article  CAS  PubMed  Google Scholar 

  • Bell-Pederson D, Shinohara ML, Loros JJ, Dunlap JC (1996) Circadian clock-controlled genes isolated from Neurospora crassa are late night- to early morning-specific. Proc Natl Acad Sci USA 93:13096–13101

    Article  Google Scholar 

  • Berridge MJ, Bootman MD, Lipp P (1998) Calcium—a life and death signal. Nature 395:645–648

    Article  CAS  PubMed  Google Scholar 

  • Bobrowicz P, Pawlak R, Correa A, Bell-Pedersen D, Ebbole DJ (2002) The Neurospora crassa pheromone precursor genes are regulated by the mating type locus and the circadian clock. Mol Microbiol 45:795–804

    Article  CAS  PubMed  Google Scholar 

  • Boilard E, Lai Y, Larabee K, Balestrieri B, Ghomashchi F, Fujioka D, Gobezie R, Coblyn JS, Weinblatt ME, Massarotti EM, Thornhill TS, Divangahi M, Remold H, Lambeau G, Gelb MH, Arm JP, Lee DM (2010) A novel anti-inflammatory role for secretory phospholipase A2 in immune complex-mediated arthritis. EMBO Mol Med 2:172–187. doi:10.1002/emmm.201000072

    Article  PubMed  PubMed Central  Google Scholar 

  • Bootman MD, Collins TJ, Peppiatt CM, Prothero LS, Mac-Kenzie L, De Smet P, Travers M, Tovey SC, Seo JT, Berridge MJ, Ciccolini F, Lipp P (2001) Calcium signalling—an overview. Semin Cell Dev Biol 12:3–10

    Article  CAS  PubMed  Google Scholar 

  • Borkovich KA, Alex LA, Yarden O, Freitag M, Turner GE, Read ND, Seiler S, Bell-Pedersen D, Paietta J, Plesofsky N, Plamann M, Goodrich-Tanrikulu M, Schulte U, Mannhaupt G, Nargang FE, Radford A, Selitrennikoff C, Galagan JE, Dunlap JC, Loros JJ, Catcheside D, Inoue H, Aramayo R, Polymenis M, Selker EU, Sachs MS, Marzluf GA, Paulsen I, Davis R, Ebbole DJ, Zelter A, Kalkman ER, O’Rourke R, Bowring F, Yeadon J, Ishii C, Suzuki K, Sakai W, Pratt R (2004) Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev 68:1–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavazzini D, Meschi F, Corsini R, Bolchi A, Rossi GL, Einsle O, Ottonello S (2013) Autoproteolytic activation of a symbiosis-regulated truffle phospholipase A2. J Biol Chem 288:1533–1547

    Article  CAS  PubMed  Google Scholar 

  • Chin D, Means AR (2000) Calmodulin: a prototypical calcium sensor. Trends Cell Biol 10:322–328

    Article  CAS  PubMed  Google Scholar 

  • Clapham DE (2007) Calcium signaling. Cell 131:1047–1058

    Article  CAS  PubMed  Google Scholar 

  • Coppin E, Debuchy R, Arnaise S, Picard M (1997) Mating types and sexual development in filamentous ascomycetes. Microbiol Mol Biol Rev 61:411–428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cordeiro JM, Boda B, Gonçalves PP, Dunant Y (2013) Synaptotagmin 1 is required for vesicular Ca²+/H+-antiport activity. J Neurochem 126:37–46. doi:10.1111/jnc.12278

    Article  CAS  PubMed  Google Scholar 

  • Davis RH, De Serres FJ (1970) Genetic and microbiological research techniques for Neurospora crassa. Methods Enzymol 71:79–143

    Article  Google Scholar 

  • Deka R, Tamuli R (2013) Neurospora crassa ncs-1, mid-1 and nca-2 double-mutant phenotypes suggest diverse interaction among three Ca2+-regulating gene products. J Genet 92:559–563

    Article  PubMed  Google Scholar 

  • Deka R, Kumar R, Tamuli R (2011) Neurospora crassa homologue of neuronal calcium sensor-1 has a role in growth, calcium stress tolerance, and ultraviolet survival. Genetica 139:885–894

    Article  CAS  PubMed  Google Scholar 

  • Deka R, Ghosh A, Tamuli R, Borkovich KA (2016) Heterotrimeric G proteins. In: Drik H (ed) The mycota IV. Springer, Berlin

    Google Scholar 

  • Dennis EA, Cao J, Hsu YH, Magrioti V, Kokotos G (2011) Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev 111:6130–6185. doi:10.1021/cr200085w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Díaz-Sánchez V, Estrada AF, Trautmann D, Limón MC, Al-Babili S, Avalos J (2011) Analysis of al-2 mutations in Neurospora. PLoS One 6:e21948

    Article  PubMed  PubMed Central  Google Scholar 

  • Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620

    Article  CAS  PubMed  Google Scholar 

  • Estrada AF, Youssar L, Scherzinger D, Al-Babili S, Avalos J (2008) The ylo-1 gene encodes an aldehyde dehydrogenase responsible for the last reaction in the Neurospora carotenoid pathway. Mol Microbiol 69:1207–1220

    Article  CAS  PubMed  Google Scholar 

  • Gadd GM (1994) Signal transduction in fungi. In: Gow NAR, Gadd GM (eds) The growing fungus. Chapman and Hall, London, pp 183–210

    Google Scholar 

  • Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma LJ, Smirnov S, Purcell S, Rehman B, Elkins T, Engels R, Wang S, Nielsen CB, Butler J, Endrizzi M, Qui D, Ianakiev P, Bell-Pedersen D, Nelson MA, Werner-Washburne M, Selitrennikoff CP, Kinsey JA, Braun EL, Zelter A, Schulte U, Kothe GO, Jedd G, Mewes W, Staben C, Marcotte E, Greenberg D, Roy A, Foley K, Naylor J, Stange-Thomann N, Barrett R, Gnerre S, Kamal M, Kamvysselis M, Mauceli E, Bielke C, Rudd S, Frishman D, Krystofova S, Rasmussen C, Metzenberg RL, Perkins DD, Kroken S, Cogoni C, Macino G, Catcheside D, Li W, Pratt RJ, Osmani SA, DeSouza CP, Glass L, Orbach MJ, Berglund JA, Voelker R, Yarden O, Plamann M, Seiler S, Dunlap J, Radford A, Aramayo R, Natvig DO, Alex LA, Mannhaupt G, Ebbole DJ, Freitag M, Paulsen I, Sachs MS, Lander ES, Nusbaum C, Birren B (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859–868

    Article  CAS  PubMed  Google Scholar 

  • Gavric O, dos Santos DB, Griffiths A (2007) Mutation and divergence of the phospholipase C gene in Neurospora crassa. Fungal Genet Biol 44:242–249

    Article  CAS  PubMed  Google Scholar 

  • Ghannoum MA (2000) Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev 13:122–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gohain D, Deka R, Tamuli R (2016) Identification of critical amino acid residues and functional conservation of the Neurospora crassa and Rattus norvegicus orthologues of neuronal calcium sensor-1. Genetica 144:665–674

    Article  CAS  PubMed  Google Scholar 

  • Harding RW (1974) The effect of temperature on photo-induced carotenoid biosynthesis in Neurospora crassa. Plant Physiol 54:142–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harding RW, Huang PC, Mitchell HK (1969) Photochemical studies of the carotenoid biosynthetic pathway in Neurospora crassa. Arch Biochem Biophys 129:696–707

    Article  CAS  PubMed  Google Scholar 

  • Ivey FD, Hodge PN, Turner GE, Borkovich KA (1996) The Gαi homologue gna-1 controls multiple differentiation pathways in Neurospora crassa. Mol Biol Cell 7:1283–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivey FD, Kays AM, Borkovich KA (2002) Shared and independent roles for a Gαi protein and adenylate cyclase in regulating development and stress responses in Neurospora crassa. Eukaryot Cell 1:634–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer SV, Ramakrishnan M, Kasbekar DP (2009) Neurospora crassa fmf-1 encodes the homologue of the Schizosaccharomyces pombe Ste11p regulator of sexual development. J Genet 88:33–39

    Article  CAS  PubMed  Google Scholar 

  • Johnson TE (1979) A Neurospora mutation that arrests perithecial development as either male or female parent. Genetics 92:1107–1120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kays AM, Rowley PS, Baasiri RA, Borkovich KA (2000) Regulation of conidiation and adenylyl cyclase levels by the Gα protein GNA-3 in Neurospora crassa. Mol Cell Biol 20:7693–7705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Borkovich KA (2004) A pheromone receptor gene, pre-1, is essential for mating type-specific directional growth and fusion of trichogynes and female fertility in Neurospora crassa. Mol Microbiol 52:1781–1798

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Borkovich KA (2006) Pheromones are essential for male fertility and sufficient to direct chemotropic polarized growth of trichogynes during mating in Neurospora crassa. Eukaryot Cell 5:544–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Metzenberg RL, Nelson MA (2002) Multiple functions of mfa-1, a putative pheromone precursor gene of Neurospora crassa. Eukaryot Cell 1:987–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Wright SJ, Park G, Ouyang S, Krystofova S, Borkovich KA (2012) Roles for receptors, pheromones, G proteins, and mating type genes during sexual reproduction in Neurospora crassa. Genetics 190:1389–1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kothe GO, Free SJ (1998) The isolation and characterization of nrc-1 and nrc-2, two genes encoding protein kinases that control growth and development in Neurospora crassa. Genetics 149:117–130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Tamuli R (2014) Calcium/calmodulin-dependent kinases are involved in growth, thermotolerance, oxidative stress survival, and fertility in Neurospora crassa. Arch Microbiol 196:295–305

    Article  CAS  PubMed  Google Scholar 

  • Lauter FR, Yamashiro CT, Yanofsky C (1997) Light stimulation of conidiation in Neurospora crassa: studies with the wild-type strain and mutants wc-1, wc-2 and acon-2. J Photochem Photobiol 37:203–211

    Article  CAS  Google Scholar 

  • Laxmi V, Tamuli R (2015) The Neurospora crassa cmd, trm-9, and nca-2 play a role in growth, development, and survival in stress conditions. Genom Appl Biol 6:1–12

    Google Scholar 

  • Laxmi V, Tamuli R (2016) The calmodulin gene in Neurospora crassa is required for normal vegetative growth, ultraviolet survival, and sexual development. Arch Micro Biol. doi:10.1007/s00203-016-1319-0 (Epub ahead of print)

    Google Scholar 

  • Lew RR, Giblon RE, Lorenti MS (2015) The phenotype of a phospholipase C (plc-1) mutant in a filamentous fungus, Neurospora crassa. Fungal Genet Biol 82:158–167. doi:10.1016/j.fgb.2015.07.007

    Article  CAS  PubMed  Google Scholar 

  • Li C, Schmidhauser TJ (1995) Developmental and photoregulation of al-1 and al-2, structural genes for two enzymes essential for carotenoid biosynthesis in Neurospora. Dev Biol 169:90–95

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆Ct method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Madi L, McBride SA, Bailey LA, Ebbole DJ (1997) rco-3, a gene involved in glucose transport and conidiation in Neurospora crassa. Genetics 146:499–508

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCluskey K, Wiest A, Plamann M (2010) The Fungal Genetics Stock Center: a repository for 50 years of fungal genetics research. J Biosci 35:119–126

    Article  CAS  PubMed  Google Scholar 

  • Michán S, Lledías F, Hansberg W (2003) Asexual development is increased in Neurospora crassa cat-3-null mutant strains. Eukaryot Cell 2:798–808

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller BT, Russo VRA (1989) Nitrogen starvation or glucose limitation induces conidiation in constantly shaken liquid cultures of Neurospora crassa. Fungal Genet Newslett 36:58–60

    Article  Google Scholar 

  • Murakami M, Kudo I (2004) Secretory phospholipase A2. Biol Pharm Bull 27:1158–1164

    Article  CAS  PubMed  Google Scholar 

  • Nakahama T, Nakanishi Y, Viscomi AR, Takaya K, Kitamoto K, Ottonello S, Arioka M (2010) Distinct enzymatic and cellular characteristics of two secretory phospholipases A2 in the filamentous fungus Aspergillus oryzae. Fungal Genet Biol 47:318–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson MA (1996) Mating systems in ascomycetes: a romp in the sac. Trends Genet 12:69–74

    Article  CAS  PubMed  Google Scholar 

  • Nelson MA, Metzenberg RL (1992) Sexual development genes of Neurospora crassa. Genetics 132:149–162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perkins DD, Barry EG (1977) The cytogenetics of Neurospora. Adv Genet 19:133–285

    CAS  PubMed  Google Scholar 

  • Pöggeler S, Kück U (2001) Identification of transcriptionally expressed pheromone receptor genes in filamentous ascomycetes. Gene 280:9–17

    Article  PubMed  Google Scholar 

  • Qin J, Kang W, Leung B, McLeod M (2003) Ste11p, a high-mobility-group box DNA-binding protein, undergoes pheromone- and nutrient-regulated nuclear-cytoplasmic shuttling. Mol Cell Biol 23:3253–3264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quandt K, Frech K, Karas H, Wingender E (1995) MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res 23:4878–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raju NB (1992) Genetic control of the sexual cycle in Neurospora. Mycol Res 96:241–262

    Article  Google Scholar 

  • Rhee SG (2001) Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem 70:281–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhee SG, Bae YS (1997) Regulation of phosphoinositide-specific phospholipase C isozymes. J Biol Chem 272:15045–15048

    Article  CAS  PubMed  Google Scholar 

  • Roberts AN, Berlin V, Hager KM, Yanofsky C (1988) Molecular analysis of a Neurospora crassa gene expressed during conidiation. Mol Cell Biol 8:2411–2418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Amaya DB, Kimura M (2004) Harvest plus handbook for carotenoid analysis. Harvest Plus Technical Monograph 2. International Food Policy Research Institute (IFPRI) and International Center for Tropical Agriculture (CIAT), Washington, DC

    Google Scholar 

  • Schaloske RH, Dennis EA (2006) The phospholipase A2 superfamily and its group numbering system. Biochim Biophys Acta 1761:1246–1259

    Article  CAS  PubMed  Google Scholar 

  • Schroeder WA, Johnson EA (1995) Singlet oxygen and peroxyl radicals regulate carotenoid biosynthesis in Phaffia rhodozyma. J Biol Chem 270:18374–18379

    Article  CAS  PubMed  Google Scholar 

  • Selker EU, Garrett PW (1988) DNA sequence duplications trigger gene inactivation in Neurospora crassa. Proc Natl Acad Sci USA 85:6870–6874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw BD, Hoch HC (2000) Ca2+ regulation of Phyllosticta ampelicida pycnidiospore germination and appressorium formation. Fungal Genet Biol 31:43–53

    Article  CAS  PubMed  Google Scholar 

  • Soragni E, Bolchi A, Balestrini R, Gambaretto C, Percudani R, Bonfante P, Ottonello S (2001) A nutrient-regulated, dual localization phospholipase A2 in the symbiotic fungus Tuber borchii. EMBO J 20:5079–5090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundquist AR, Briviba K, Sies H (1994) Singlet oxygen quenching by carotenoids. Methods Enzymol 234:384–388

    Article  CAS  PubMed  Google Scholar 

  • Takayanagi A, Miyakawa T, Asano A, Ohtsuka J, Tanokura M, Arioka M (2015) Expression, purification, refolding, and enzymatic characterization of two secretory phospholipases A2 from Neurospora crassa. Protein Expr Purif 115:69–75

    Article  CAS  PubMed  Google Scholar 

  • Tamuli R, Kumar R, Deka R (2011) Cellular roles of neuronal calcium sensor-1 and calcium/calmodulin-dependent kinases in fungi. J Basic Microbiol 51:120–128

    Article  CAS  PubMed  Google Scholar 

  • Tamuli R, Kumar R, Srivastava DA, Deka R (2013) Calcium signaling. In: Kasbekar DP, McCluskey K (eds) Neurospora: genomics and molecular biology, Caister Academic Press, Norfolk, pp 35–57

    Google Scholar 

  • Tamuli R, Deka R, Borkovich KA (2016) Calcineurin subunits A and B interact to regulate growth and asexual and sexual development in Neurospora crassa. PLoS One 11:e0151867

    Article  PubMed  PubMed Central  Google Scholar 

  • Vogel HJ (1964) Distribution of lysine pathways among fungi: evolutionary implications. Am Nat 98:435–446

    Article  CAS  Google Scholar 

  • Williams RL, Katan M (1996) Structural views of phosphoinositide-specific phospholipase C: signalling the way ahead. Structure 4:1387–1394

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Takeuchi H, Kanematsu T, Allen V, Yagisawa H, Kikkawa U, Watanabe Y, Nakasima A, Katan M, Hirata M (1999) Involvement of EF hand motifs in the Ca2+-dependent binding of the pleckstrin homology domain to phosphoinositides. Eur J Biochem 265:481–490

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Borkovich KA (1999) Mutational activation of a Gαi causes uncontrolled proliferation of aerial hyphae and increased sensitivity to heat and oxidative stress in Neurospora crassa. Genetics 151:107–117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Q, Poole SI, Borkovich KA (2002) A G-protein β subunit required for sexual and vegetative development and maintenance of normal G alpha protein levels in Neurospora crassa. Eukaryot Cell 1:378–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yap KL, Kim J, Truong K, Sherman M, Yuan T, Ikura M (2000) Calmodulin target database. J Struct Funct Genom 1:8–14

    Article  CAS  Google Scholar 

  • Yoshida Y, Hasunuma K (2004) Reactive oxygen species affect photomorphogenesis in Neurospora crassa. J Biol Chem 279:6986–6993

    Article  CAS  PubMed  Google Scholar 

  • Zalokar M (1954) Studies on biosynthesis of carotenoids in Neurospora crassa. Arch Biochem Biophys 50:71–80

    Article  CAS  PubMed  Google Scholar 

  • Zelter A, Bencina M, Bowman BJ, Yarden O, Read ND (2004) A comparative genomic analysis of the calcium signaling machinery in Neurospora crassa, Magnaporthe grisea, and Saccharomyces cerevisiae. Fungal Genet Biol 41:827–841

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The FGSC generously waived charges for strains. The FGSC was supported by NSF Grant BIR-9222772. AB was supported by a Research Fellowship from the Ministry of Human Resource Development, Government of India. We thank IIT Guwahati, and Department of Biotechnology, Government of India (BT/PR3635/BCE/8/892/2012), for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjan Tamuli.

Additional information

Communicated by M. Kupiec.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 8655 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barman, A., Tamuli, R. The pleiotropic vegetative and sexual development phenotypes of Neurospora crassa arise from double mutants of the calcium signaling genes plc-1, splA2, and cpe-1 . Curr Genet 63, 861–875 (2017). https://doi.org/10.1007/s00294-017-0682-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-017-0682-y

Keywords

Navigation