Skip to main content
Log in

FvSNF1, the sucrose non-fermenting protein kinase gene of Fusarium virguliforme, is required for cell-wall-degrading enzymes expression and sudden death syndrome development in soybean

  • Original Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Fusarium virguliforme is a soil-borne pathogenic fungus that causes sudden death syndrome (SDS) in soybean. Its pathogenicity is believed to require the activity of cell-wall-degrading enzymes (CWDEs). The sucrose non-fermenting protein kinase 1 gene (SNF1) is a key component of the glucose de-repression pathway in yeast, and a regulator of gene expression for CWDEs in some plant pathogenic fungi. To elucidate the functional role of the SNF1 homolog in F. virguliforme, FvSNF1 was disrupted using a split-marker strategy. Disruption of FvSNF1 in F. virguliforme abolishes galactose utilization and causes poor growth on xylose, arabinose and sucrose. However, the resulting Fvsnf1 mutant grew similar to wild-type and ectopic transformants on glucose, fructose, maltose, or pectin as the main source of carbon. The Fvsnf1 mutant displayed no expression of the gene-encoding galactose oxidase (GAO), a secretory enzyme that catalyzes oxidation of D-galactose. It also exhibited a significant reduction in the expression of several CWDE-coding genes in contrast to the wild-type strain. Greenhouse pathogenicity assays revealed that the Fvsnf1 mutant was severely impaired in its ability to cause SDS on challenged soybean plants. Microscopy and microtome studies on infected roots showed that the Fvsnf1 mutant was defective in colonizing vascular tissue of infected plants. Cross and longitudinal sections of infected roots stained with fluorescein-labeled wheat germ agglutinin and Congo red showed that the Fvsnf1 mutant failed to colonize the xylem vessels and phloem tissue at later stages of infection. Quantification of the fungal biomass in inoculated roots further confirmed a reduced colonization of roots by the Fvsnf1 mutant when compared to the wild type. These findings suggest that FvSNF1 regulates the expression of CWDEs in F. virguliforme, thus affecting the virulence of the fungus on soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aoki T, O’Donnell K, Homma Y, Lattanzi AR (2003) Sudden-death syndrome of soybean is caused by two morphologically and phylogenetically distinct species within the Fusarium solani species complex F. virguliforme in North America and F. tucumaniae in South America. Mycologia 95:660–684

    PubMed  Google Scholar 

  • Apel-Birkhold PC, Walton JD (1996) Cloning, disruption, and expression of two endo-beta 1, 4-xylanase genes, XYL2 and XYL3, from Cochliobolus carbonum. Appl Environ Microbiol 62:4129–4135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aro N, Pakula T, Penttila M (2005) Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev 29:719–739. doi:10.1016/j.femsre.2004.11.006

    Article  CAS  PubMed  Google Scholar 

  • Baron AJ, Stevens C, Wilmot C et al (1994) Structure and mechanism of galactose oxidase. The free radical site. J Biol Chem 269:25095–25105

    CAS  PubMed  Google Scholar 

  • Brar HK, Bhattacharyya MK (2012) Expression of a single chain variable fragment antibody against a Fusarium virguliforme toxin peptide enhances tolerance to sudden death syndrome in transgenic soybean plants. Mol Plant Microbe Interact 25:817–824. doi:10.1094/MPMI-12-11-0317

    Article  CAS  PubMed  Google Scholar 

  • Brar HK, Swaminathan S, Bhattacharyya MK (2011) The Fusarium virguliforme toxin FvTox1 causes foliar sudden death syndrome-like symptoms in soybean. Mol Plant Microbe Interact 24:1179–1188. doi:10.1094/MPMI-12-10-0285

    Article  CAS  PubMed  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  CAS  PubMed  Google Scholar 

  • Catlett NL, Lee Bee-Na TBG (2003) Split-marker recombination for efficient targeted deletion of fungal genes. In: Fungal Genet. http://www.fgsc.net/fgn50/fgn50catlett.htm. Accessed 7 Jan 2015

  • Celenza JL, Carlson M (1984) Cloning and genetic mapping of SNF1, a gene required for expression of glucose-repressible genes in Saccharomyces cerevisiae. Mol Cell Biol 4:49–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Celenza JL, Carlson M (1986) A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science 233:1175–1180

    Article  CAS  PubMed  Google Scholar 

  • Celenza JL, Eng FJ, Carlson M (1989) Molecular analysis of the SNF4 gene of Saccharomyces cerevisiae: evidence for physical association of the SNF4 protein with the SNF1 protein kinase. Mol Cell Biol 9:5045–5054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chevenet F, Brun C, Bañuls A-L et al (2006) TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics 7:439. doi:10.1186/1471-2105-7-439

    Article  PubMed  PubMed Central  Google Scholar 

  • Deising HB, Werner S, Wernitz M (2000) The role of fungal appressoriain plant infection. Microbes Infect 2:1631–1641. doi:10.1016/S1286-4579(00)01319-8

    Article  CAS  PubMed  Google Scholar 

  • Dereeper A, Guignon V, Blanc G et al (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469. doi:10.1093/nar/gkn180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi:10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao S, Choi GILH, Shain L (1996) Cloning and Targeted Disruption of enpg-1, encoding the major in vitro extracellular endopolygalacturonase of the chestnut blight fungus, Cryphonectria parasitica. Appl Environ Microbiol 62:1984–1990

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Jackson TA, Hartman GL, Niblack TL (2006) Interactions between the soybean cyst nematode and Fusarium solani f. sp. glycines based on greenhouse factorial experiments. Phytopathology 96:1409–1415. doi:10.1094/PHYTO-96-1409

    Article  CAS  PubMed  Google Scholar 

  • Gasparotto EPL, Abrão SCC, Inagaki SY, et al (2006) Production and characterization of galactose oxidase produced by four isolates of Fusarium graminearum. Brazilian Arch Biol Technol 49:557–564. doi:10.1590/S1516-89132006000500004

    Article  CAS  Google Scholar 

  • Goodwin PH, Chen GYJ (2002) High expression of a sucrose non-fermenting (SNF1) related protein kinase from Colletotrichum gloeosporoides f. sp. malvae is associated with penetration of Malva pusilla. FEMS Microbiol Lett 215:169–174

    Article  CAS  PubMed  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, et al (2010) New algorithms and methods to estimate maximum likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. doi:10.1093/sysbio/syq010

    Article  CAS  PubMed  Google Scholar 

  • Hardie DG, Carling D, Carlson M (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 67:821–855

    Article  CAS  PubMed  Google Scholar 

  • Hashmi RY, Bond JP, Schmidt ME, Klein JH (2005) A temperature-controlled water bath method for evaluating soybean reaction to sudden death syndrome (SDS). Online. Plant Health Prog. doi:10.1094/PHP-2005-0906-01-RS

    Google Scholar 

  • He P-H, Wang X-X, Chu X-L et al (2015) RNA sequencing analysis identifies the metabolic and developmental genes regulated by BbSNF1 during conidiation of the entomopathogenic fungus Beauveria bassiana. Curr Genet 61:143–152. doi:10.1007/s00294-014-0462-x

    Article  PubMed  Google Scholar 

  • Huisman MM, Schols H, Voragen AG (1998) Cell wall polysaccharides from soybean (Glycine max) meal. Isolation and characterisation. Carbohydr Polym 37:87–95. doi:10.1016/S0144-8617(97)00111-2

    Article  Google Scholar 

  • Jiang R, Carlson M (1997) The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex. Mol Cell Biol 17:2099–2106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin H, Hartman Gl, Nickell Cd, Widholm Jm (1996) Characterization and purification of a phytotoxin produced by Fusarium solani, the causal agent of soybean sudden death syndrome. Phytopathology 86:277–282

    Article  CAS  Google Scholar 

  • Kandel YR, Haudenshield JS, Srour AY et al (2015) Multilaboratory comparison of quantitative PCR Assays for detection and quantification of Fusarium virguliforme from soybean roots and soil. Phytopathology 105:1601–1611. doi:10.1094/PHYTO-04-15-0096-R

    Article  CAS  PubMed  Google Scholar 

  • Kuchin S, Vyas VK, Carlson M (2003) Role of the yeast Snf1 protein kinase in invasive growth. Biochem Soc Trans 31:175–177. doi:10.1042/

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Lee J, Lee S et al (2009) GzSNF1 is required for normal sexual and asexual development in the ascomycete Gibberella zeae. Eukaryot Cell 8:116–127. doi:10.1128/EC.00176-08

    Article  CAS  PubMed  Google Scholar 

  • Leuthner B, Aichinger C, Oehmen E et al (2005) A H2O2-producing glyoxal oxidase is required for filamentous growth and pathogenicity in Ustilago maydis. Mol Genet Genomics 272:639–650. doi:10.1007/s00438-004-1085-6

    Article  CAS  PubMed  Google Scholar 

  • Levasseur A, Drula E, Lombard V, et al (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6:41. doi:10.1186/1754-6834-6-41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansouri S, van Wijk R, Rep M, Fakhoury AM (2009) Transformation of Fusarium virguliforme, the causal agent of sudden death syndrome of soybean. J Phytopathol 157:319–321. doi:10.1111/j.1439-0434.2008.01485.x

    Article  CAS  Google Scholar 

  • Moyrand F, Fontaine T, Janbon G (2007) Systematic capsule gene disruption reveals the central role of galactose metabolism on Cryptococcus neoformans virulence. Mol Microbiol 64:771–781. doi:10.1111/j.1365-2958.2007.05695.x

    Article  CAS  PubMed  Google Scholar 

  • Nadal M, Garcia-Pedrajas MD, Gold SE (2010) The snf1 gene of Ustilago maydis acts as a dual regulator of cell wall degrading enzymes. Phytopathology 100:1364–1372. doi:10.1094/PHYTO-01-10-0011

    Article  CAS  PubMed  Google Scholar 

  • Navi SS, Yang XB, Pathology P (2008) Foliar symptom expression in association with early infection and xylem colonization by Fusarium virguliforme (formerly F. solani f. sp. glycines), the causal agent of soybean sudden death syndrome. Plant Health Progress. doi:10.1094/PHP-2008-0222-01-RS

    Google Scholar 

  • Ospina-Giraldo MD, Mullins E, Kang S (2003) Loss of function of the Fusarium oxysporum SNF1 gene reduces virulence on cabbage and Arabidopsis. Curr Genet 44:49–57. doi:10.1007/s00294-003-0419-y

    Article  CAS  PubMed  Google Scholar 

  • Ostling J, Ronne H (1998) Negative control of the Mig1p repressor by Snf1p-dependent phosphorylation in the absence of glucose. Eur J Biochem 252:162–168. doi:10.1046/j.1432-1327.1998.2520162.x

    Article  CAS  PubMed  Google Scholar 

  • Ouhida I, Pérez JF, Gasa J (2002) Soybean (Glycine max) cell wall composition and availability to feed enzymes. J Agric Food Chem 50:1933–1938

    Article  CAS  PubMed  Google Scholar 

  • Pudake RN, Swaminathan S, Sahu BB et al (2013) Investigation of the Fusarium virguliforme fvtox1 mutants revealed that the FvTox1 toxin is involved in foliar sudden death syndrome development in soybean. Curr Genet 59:107–117. doi:10.1007/s00294-013-0392-z

    Article  CAS  PubMed  Google Scholar 

  • Rogers LM, Kim YK, Guo W et al (2000) Requirement for either a host- or pectin-induced pectate lyase for infection of Pisum sativum by Nectria hematococca. Proc Natl Acad Sci USA 97:9813–9818. doi:10.1073/pnas.160271497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy KW (1997) Fusarium solani on soybean roots: nomenclature of the causal agent of sudden death syndrome and identity and relevance of F. solani form B. Plant Dis 81:259–266. doi:10.1094/PDIS.1997.81.3.259

    Article  Google Scholar 

  • Roy KW, Lawrence GW, Hodges HH et al (1989) Sudden death syndrome of soybean: Fusarium solani as incitant and relation of Heterodera glycines to disease severity. Phytopathology 79:191–197

    Article  Google Scholar 

  • Roy KW, Rupe JC, Hershman DE, Abney TS (1997) Sudden Death Syndrome of Soybean. Plant Dis 81:1100–1111. doi:10.1094/PDIS.1997.81.10.1100

    Article  Google Scholar 

  • Ruijter GJG, Visser J (1997) Carbon repression in Aspergilli. FEMS Microbiol Lett 151:103–114.

    Article  CAS  PubMed  Google Scholar 

  • Rupe JC (1989) Frequency and pathogenicity of Fusarium solani recovered from soybeans with sudden death syndrome. Plant Dis 73:581–584

    Article  Google Scholar 

  • Rupe JC, Correll JC, Guerber JC et al (2001) Differentiation of the sudden death syndrome pathogen of soybean, Fusarium solani f. sp. glycines, from other isolates of F. solani based on cultural morphology, pathogenicity, and mitochondrial DNA restriction fragment length polymorp. Can J Bot 79:829–835. doi:10.1139/cjb-79-7-829

    CAS  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA sepacer-length polymorphism in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci 81:8014–8019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Santangelo GM (2006) Glucose signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70:253–282. doi:10.1128/MMBR.70.1.253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanz P (2003) Snf1 protein kinase: a key player in the response to cellular stress in yeast. Biochem Soc Trans 31:178–181. doi:10.1042/

    Article  CAS  PubMed  Google Scholar 

  • Schmidt MC, Mccartney RR (2000) β-subunits of Snf1 kinase are required for kinase function and substrate definition. EMBO J 19:4936–4943. doi:10.1093/emboj/19.18.4936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. doi:10.1038/nmeth.2089

    Article  CAS  PubMed  Google Scholar 

  • Scott-Craig JS, Cheng YQ, Cervone F et al (1998) Targeted mutants of Cochliobolus carbonum lacking the two major extracellular polygalacturonases. Appl Environ Microbiol 64:1497–1503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tonukari NJ, Scott-Craig JS, Walton JD (2000) The Cochliobolus carbonum SNF1 gene is required for cell wall-degrading enzyme expression and virulence on maize. Plant Cell 12:237–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treitel MA, Kuchin S, Carlson M (1998) Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae. Mol Cell Biol 18:6273–6280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tzima AK, Paplomatas EJ, Rauyaree P et al (2011) VdSNF1, the sucrose nonfermenting protein kinase gene of Verticillium dahliae, is required for virulence and expression of genes involved in cell-wall degradation. Mol Plant Microbe Interact 24:129–142. doi:10.1094/MPMI-09-09-0217

    Article  CAS  PubMed  Google Scholar 

  • Vacher S, Cotton P, Fèvre M (2003) Characterization of a SNF1 homologue from the phytopathogenic fungus Sclerotinia sclerotiorum. Gene 310:113–121. doi:10.1016/S0378-1119(03)00525-0

    Article  CAS  PubMed  Google Scholar 

  • Wu SC, Ham KS, Darvill AG, Albersheim P (1997) Deletion of two endo-β-1,4-xylanase genes reveals additional isozymes secreted by the rice blast fungus. Mol Plant Microbe Interact 10:700–708. doi:10.1094/MPMI.1997.10.6.700

    Article  CAS  Google Scholar 

  • Yi M, Park JH, Ahn JH, Lee YH (2008) MoSNF1 regulates sporulation and pathogenicity in the rice blast fungus Magnaporthe oryzae. Fungal Genet Biol 45:1172–1181. doi:10.1016/j.fgb.2008.05.003

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Son H, Park AR et al (2014) Functional characterization of sucrose non-fermenting 1 protein kinase complex genes in the Ascomycete Fusarium graminearum. Curr Genet 60:35–47. doi:10.1007/s00294-013-0409-7

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Sun X, Xu Q et al (2013) PdSNF1, a sucrose non-fermenting protein kinase gene, is required for Penicillium digitatum conidiation and virulence. Appl Microbiol Biotechnol 97:5433–5445. doi:10.1007/s00253-012-4593-z

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the United Soybean Board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad M. Fakhoury.

Additional information

Communicated by M. Kupiec.

Electronic supplementary material

Below is the link to the electronic supplementary material.

294_2017_676_MOESM1_ESM.tif

FvSNF1 is dispensable for mycelial growth. a Radial growth comparison of wild-type strain Mont-1, Fvsnf1 mutant strain ∆SF18 and ectopic strain EctSF27 grown on PDA and V8 agar for 14 days. b Graphs presenting radial growth rates of Mont-1, ΔSF18, and EctSF27 on PDA and V8. The X-axis plots show the culture age in days and the Y-axis shows the mean radial growth in cm. Values are means of three replications. Error bars represent standard deviation (TIF 3444 KB)

294_2017_676_MOESM2_ESM.tif

Disruption of the FvSNF1 gene in F. virguliforme abolishes galactose utilization. Macroconidia of Fvsnf1 mutant strain ∆SF18 failed to germinate in liquid minimal medium amended with 2% galactose even after 2 days of incubation, whereas conidia germinated normally in the wild-type strain Mont-1 and the ectopic strain EctSF27 (TIF 870 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, K.T., Bond, J.P. & Fakhoury, A.M. FvSNF1, the sucrose non-fermenting protein kinase gene of Fusarium virguliforme, is required for cell-wall-degrading enzymes expression and sudden death syndrome development in soybean. Curr Genet 63, 723–738 (2017). https://doi.org/10.1007/s00294-017-0676-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-017-0676-9

Keywords

Navigation