Skip to main content
Log in

Transcriptomic analysis displays the effect of (-)-roemerine on the motility and nutrient uptake in Escherichia coli

  • Original Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Among the different families of plant alkaloids, (-)-roemerine, an aporphine type, was recently shown to possess significant antibacterial activity in Escherichia coli. Based on the increasing demand for antibacterials with novel mechanisms of action, the present work investigates the potential of the plant-derived alkaloid (-)-roemerine as an antibacterial in E. coli cells using microarray technology. Analysis of the genome-wide transcriptional reprogramming in cells after 60 min treatment with 100 μg/mL (-)-roemerine showed significant changes in the expression of 241 genes (p value <0.05 and fold change >2). Expression of selected genes was confirmed by qPCR. Differentially expressed genes were classified into functional categories to map biological processes and molecular pathways involved. Cellular activities with roles in carbohydrate transport and metabolism, energy production and conversion, lipid transport and metabolism, amino acid transport and metabolism, two-component signaling systems, and cell motility (in particular, the flagellar organization and motility) were among metabolic processes altered in the presence of (-)-roemerine. The down-regulation of the outer membrane proteins probably led to a decrease in carbohydrate uptake rate, which in turn results in nutrient limitation. Consequently, energy metabolism is slowed down. Interestingly, the majority of the expressional alterations were found in the flagellar system. This suggested reduction in motility and loss in the ability to form biofilms, thus affecting protection of E. coli against host cell defense mechanisms. In summary, our findings suggest that the antimicrobial action of (-)-roemerine in E. coli is linked to disturbances in motility and nutrient uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abreu AC, McBain AJ, Simoes M (2012) Plants as sources of new antimicrobials and resistance-modifying agents. Nat Prod Rep 29(9):1007–1021

    Article  CAS  PubMed  Google Scholar 

  • Adler J, Templeton B (1967) The effect of environmental conditions on the motility of Escherichia coli. J Gen Microbiol 46(2):175–184

    Article  CAS  PubMed  Google Scholar 

  • Alekshun M, Levy SB (2004) The Escherichia coli Mar locus-antibiotic resistance and more. ASM News 70:451–456

    Google Scholar 

  • Beloin C, Roux A, Ghigo JM (2008) Escherichia coli biofilms. Curr Top Microbiol Immunol 322:249–289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19(2):185–193

    Article  CAS  PubMed  Google Scholar 

  • Brazas MD, Hancock RE (2005) Using microarray gene signatures to elucidate mechanisms of antibiotic action and resistance. Drug Discov Today 10(18):1245–1252

    Article  CAS  PubMed  Google Scholar 

  • Budeyri Gokgoz N, Sariyar Akbulut B (2015) Proteomics evidence for the activity of the putative antibacterial plant alkaloid (-)-roemerine: mainstreaming omics-guided drug discovery. OMICS 19(8):478–489

    Article  Google Scholar 

  • Chavarria M, Santiago C, Platero R, Krell T, Cassasnovas JM, de Lorenzo V (2011) Fructose 1-phosphate is the preferred effector of the metabolic regulator Cra of Pseudomonas putida. J Biol Chem 286(11):9351–9359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chavarria M, Fuhrer T, Sauer U, Pflüger-Grau K, de Lorenzo V (2013) Cra regulates the cross-talk between the two branches of the phosphoenolpyruvate: phosphotransferase system of Pseudomonas putida. Environ Microbiol 15(1):121–132

    Article  CAS  PubMed  Google Scholar 

  • Chilcott GS, Hughes KT (2000) Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica Serovar typhimurium and Escherichia coli. Microbiol Mol Biol Rev 64(4):694–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croft D, Kelly G, Wu G, Haw R, Gillespie M, Matthews L, Caudy M, Garapati P, Gopinath G, Jassal B, Jupe S, Kalatskaya I, Mahajan S, May B, Ndegwa N, Schmidt E, Shamovsky V, Yung C, Birney E, Hermjakob H, Eustachio P, Stein L (2011) Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res 39(Database issue):D691–D697

    Article  Google Scholar 

  • da Huang W, Sherman BT, Lempicki RA (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57

    Article  Google Scholar 

  • Delcour AH (2009) Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta 1794:808–816

    Article  CAS  PubMed  Google Scholar 

  • DeVito JA (2008) Recombineering with tolC as a selectable/counter-selectable marker: remodeling the rRNA operons of Escherichia coli. Nucleic Acids Res 36(1):e4

    Article  PubMed  Google Scholar 

  • Diaz E, Ferrandez A, Prieto MA, Garcia L (2001) Biodegradation of aromatic compounds by Escherichia coli. Microbiol Mol Biol R 65:523–569

    Article  CAS  Google Scholar 

  • Dubey AK, Baker CS, Suzuki K, Jones AD, Pandit P, Romeo T, Babitzke P (2003) CsrA regulates translation of the Escherichia coli carbon starvation gene, cstA, by blocking ribosome access to the cstA transcript. J Bacteriol 185(15):4450–4460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrández A, Miñambres B, García B, Olivera ER, Luengo JM, García JL, Díaz E (1998) Catabolism of phenylacetic acid in Escherichia coli. Characterization of a new aerobic hybrid pathway. J Biol Chem 273(40):25974–25986

    Article  PubMed  Google Scholar 

  • Galperin MY, Makarova KS, Wolf YI, Koonin EV (2015) Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 43(Database issue):D261–D269

    Article  Google Scholar 

  • Garcia-Sureda L, Juan C, Domenech-Sanchez A, Alberti S (2011) Role of Klebsiella pneumoniae LamB porin in antimicrobial resistance. Antimicrob Agents Chemother 55:1803–1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernando-Amado S, Blanco P, Alcalde-Rico M, Corona F, Reales-Calderón JA, Sánchez MB, Martínez JL (2016) Multidrug efflux pumps as main players in intrinsic and acquired resistance to antimicrobials. Drug Resist Updat 28:13–27

    Article  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42(Database issue):D199–D205

  • Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:D457–D462

    Article  CAS  PubMed  Google Scholar 

  • Kuwada NJ, Traxler B, Wiggins PA (2015) High-throughput cell-cycle imaging opens new doors for discovery. Curr Genet 61(4):513–516

    Article  CAS  PubMed  Google Scholar 

  • Lenahan M, Sheridan A, Morris D, Duffy G, Fanning S, Burgess CM (2014) Transcriptomic analysis of triclosan-susceptible and -tolerant Escherichia coli O157:H19 in response to triclosan exposure. Microb Drug Resist 20(2):91–103

    Article  CAS  PubMed  Google Scholar 

  • Li H, Lin XM, Wang SY, Peng XX (2007) Identification and antibody-therapeutic targeting of chloramphenicol-resistant outer membrane proteins in Escherichia coli. J Proteome Res 6(9):3628–3636

    Article  CAS  PubMed  Google Scholar 

  • Lin XM, Li H, Wang C, Peng XX (2008) Proteomic analysis of nalidixic acid resistance in Escherichia coli: identification and functional characterization of OM proteins. J Proteome Res 7(6):2399–2405

    Article  CAS  PubMed  Google Scholar 

  • Lin XM, Yang JN, Peng XX, Li HA (2010) A novel negative regulation mechanism of bacterial outer membrane proteins in response to antibiotic resistance. J Proteome Res 9(11):5952–5959

    Article  CAS  PubMed  Google Scholar 

  • Lin XM, Yang MJ, Li H, Wang C, Peng XX (2014) Decreased expression of LamB and Odp1 complex is crucial for antibiotic resistance in Escherichia coli. J Proteomics 98:244–253

    Article  CAS  PubMed  Google Scholar 

  • Liou YF, Lin KH, Lu ST (1979) Screening for anti-microbial and anti-tumor alkaloids. J Taiwan Pharm Assoc 31(1):28–38

    CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitive PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Llor C, Bjerrum L (2014) Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem. Ther Adv Drug Saf 5(6):229–241

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma C, Du F, Yan L, He G, He J, Wang C, Rao G, Jiang Y, Xu G (2015) Potent activities of roemerine against Candida albicans and the underlying mechanisms. Molecules 20(10):17913–17928

    Article  CAS  PubMed  Google Scholar 

  • Mi H, Poudel S, Muruganujan A, Casagrande JT, Thomas PD (2016) PANTHER version 10: expanded protein families and functions, and analysis tools. Nucleic Acids Res 44(D1):D336–D342

    Article  CAS  PubMed  Google Scholar 

  • Mudunuri U, Che A, Yi M, Stephens RM (2009) bioDBnet: the biological database network. Bioinformatics 25(4):555–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen T, Sakasegawa Y, Doh-Ura K, Go ML (2011) Anti-prion activities and drug-like potential of functionalized quinacrine analogs with basic phenyl residues at the 9-amino position. Eur J Med Chem 46(7):2917–2929

    Article  CAS  PubMed  Google Scholar 

  • Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67(4):593–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikaido H, Vaara M (1985) Molecular basis of bacterial outer membrane permeability. Microbiol Rev 49:1–32

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niu C, Graves JD, Mokuolu FO, Gilbert SE, Gilbert ES (2005) Enhanced swarming of bacteria on agar plates containing the surfactant Tween 80. J Microbiol Methods 62(1):129–132

    Article  CAS  PubMed  Google Scholar 

  • Oliveros JC (2007) VENNY. An interactive tool for comparing lists with Venn Diagrams. http://bioinfogp.cnb.csic.es/tools/venny/index.html. Accessed 10 Dec 2016

  • Oztekin A, Baytop A, Hutin M, Foucher JP, Hocquemiller R, Cave A (1985) Comparison of chemical and botanical studies of Turkish papaver belonging to the section pilosa. Planta Med 51(5):431–434

    Article  CAS  PubMed  Google Scholar 

  • Pages JM, James CE, Winterhalter M (2008) The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat Rev Microbiol 6:893–903

    Article  CAS  PubMed  Google Scholar 

  • Peng X, Xu C, Ren H, Lin X, Wu L, Wang S (2005) Proteomics analysis of the sarcosine-insoluble outer membrane fraction of Pseudomonas aeruginosa responding to ampicillin, kanamycin, and tetracycline resistance. J Proteome Res 4:2257–2265

    Article  CAS  PubMed  Google Scholar 

  • Prajapat MK, Jain K, Saini S (2015) Control of marRAB Operon in Escherichia coli via Autoactivation and Autorepression. Biophys J 109(7):1497–1508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pratt LA, Kolter R (1999) Genetic analyses of bacterial biofilm formation. Curr Opin Microbiol 2(6):598–603

    Article  CAS  PubMed  Google Scholar 

  • Prigent-Combaret C, Prensier G, Le Thi TT, Vidal O, Lejeune P, Dorel C (2000) Developmental pathway for biofilm formation in curli-producing Escherichia coli strains: role of flagella, curli and colanic acid. Environ Microbiol 2(4):450–464

    Article  CAS  PubMed  Google Scholar 

  • Sariyar G (2002) Biodiversity in the alkaloids of Turkish Papaver species. Pure Appl Chem 74:557–574

    Article  CAS  Google Scholar 

  • Sette IM, da-Cunha EV, Barbosa-Filho JM, da-Silva MS (2000) Tetrahydroprotoberberine and aporphine alkaloids from rollinia leptopetala. Pharm Biol. 38(4):318–320

    Article  CAS  PubMed  Google Scholar 

  • Shin S, Park C (1995) Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J Bacteriol 177:4696–4702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoorvogel J, van Bussel MJAWM, van de Klundert JAM (1987) Cloning of a beta-lactam resistance determinant of Enterobacter cloacae affecting outer membrane proteins of Enterobacteriaceae. FEMS Microbiol Lett 48:277–281

    Article  CAS  Google Scholar 

  • Tanwar J, Das S, Fatima Z, Hameed S (2014) Multidrug resistance: an emerging crisis. Interdiscip Perspect Infect Dis 6:229–241

    Google Scholar 

  • Vidal O, Longin R, Prigent-Combaret C, Dorel C, Hooreman M, Lejeune P (1998) Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression. J Bacteriol 180(9):2442–2449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vinue L, McMurry LM, Levy SB (2013) The 216-bp marB gene of the marRAB operon in Escherichia coli encodes a periplasmic protein which reduces the transcription rate of marA. FEMS Microbiol Lett 345(1):49–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viveiros M, Dupont M, Rodrigues L, Couto I, Davin-Regli A, Martins M, Amaral L (2007) Antibiotic stress, genetic response and altered permeability of E.coli. PloS One 2(4):e365

    Article  PubMed  PubMed Central  Google Scholar 

  • Wink M, Schimmer O (2010) Molecular modes of action of defensive secondary metabolites. In: Wink M (ed) Annual plant reviews volume 39: functions and biotechnology of plant secondary metabolites, 2nd edn. Wiley-Blackwell, Oxford, pp 121–161

  • Wood TK, González Barrios AF, Herzberg M, Lee J (2006) Motility influences biofilm architecture in Escherichia coli. Appl Microbiol Biotechnol 72(2):361–367

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Lin X, Ren H, Zhang Y, Wang S, Peng X (2006) Analysis of outer membrane proteome of Escherichia coli related to resistance to ampicillin and tetracycline. Proteomics 6(2):462–473

    Article  CAS  PubMed  Google Scholar 

  • Yin S, Rao G, Wang J, Luo L, He G, Wang C, Ma C, Luo X, Hou Z, Xu G (2015) Roemerine Improves the Survival Rate of Septicemic BALB/c Mice by Increasing the Cell Membrane Permeability of Staphylococcus aureus. PloS one 10(11):e0143863

    Article  PubMed  PubMed Central  Google Scholar 

  • You M, Wickramaratne D, Silva GL, Chai H, Chagwedera TE, Farnsworth NR, Cordell GA, Kinghorn AD, Pezzuto JM (1995) (-)-Roemerine, an aporphine alkaloid from Annona senegalensis that reverses the multidrug-resistance phenotype with cultured cells. J Nat Prod 58(4):598–604

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Wei B, Shi M, Gao H (2011) Functional assessment of EnvZ/OmpR two-component system in Shewanella oneidensis. PLoS One 6(8):e23701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, McCormack FX, Levesque RC, O’Toole GA, Lau GW (2007) The flagellum of Pseudomonas aeruginosa is required for resistance to clearance by surfactant protein A. PLoS One 6:e564

    Article  Google Scholar 

  • Zhang D, Li H, Lin X, Peng X (2015) Outer membrane proteomics of kanamycin-resistant Escherichia coli identified MipA as a novel antibiotic resistance-related protein. FEMS Microbiol Lett 362(11):1–8

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Funding by TUBITAK (113M052) and Marmara University, Scientific Research Projects Committee (FEN-A-050614-0238) are gratefully acknowledged. We would like to express our special thanks to Ceyhun Bereketoglu for his kind help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berna Sariyar Akbulut.

Additional information

Communicated by M. Kupiec.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 68 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayyildiz, D., Arga, K.Y., Avci, F.G. et al. Transcriptomic analysis displays the effect of (-)-roemerine on the motility and nutrient uptake in Escherichia coli . Curr Genet 63, 709–722 (2017). https://doi.org/10.1007/s00294-016-0673-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-016-0673-4

Keywords

Navigation