Skip to main content

Epigenetic transcriptional memory

Abstract

Organisms alter gene expression to adapt to changes in environmental conditions such as temperature, nutrients, inflammatory signals, and stress (Gialitakis et al. in Mol Cell Biol 30:2046–2056, 2010; Conrath in Trends Plant Sci 16:524–531, 2011; Avramova in Plant J 83:149–159, 2015; Solé et al. in Curr Genet 61:299–308, 2015; Ho and Gasch in Curr Genet 61:503–511, 2015; Bevington et al. in EMBO J 35:515–535, 2016; Hilker et al. in Biol Rev Camb Philos Soc 91:1118–1133, 2016). In some cases, organisms can “remember” a previous environmental condition and adapt to that condition more rapidly in the future (Gems and Partridge 2008). Epigenetic transcriptional memory in response to a previous stimulus can produce heritable changes in the response of an organism to the same stimulus, quantitatively or qualitatively altering changes in gene expression (Brickner et al. in PLoS Biol, 5:e81, 2007; Light et al. in Mol Cell 40:112–125, 2010; in PLoS Biol, 11:e1001524, 2013; D’Urso and Brickner in Trends Genet 30:230–236, 2014; Avramova in Plant J 83:149–159, 2015; D’Urso et al. in Elife. doi: 10.7554/eLife.16691, 2016). The role of chromatin changes in controlling binding of poised RNAPII during memory is conserved from yeast to humans. Here, we discuss epigenetic transcriptional memory in different systems and our current understanding of its molecular basis. Our recent work with a well-characterized model for transcriptional memory demonstrated that memory is initiated by binding of a transcription factor, leading to essential changes in chromatin structure and allowing binding of a poised form of RNA polymerase II to promote the rate of future reactivation (D’Urso et al. in Elife. doi: 10.7554/eLife.16691, 2016).

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Ardehali MB, Mei A, Zobeck KL et al (2011) Drosophila Set1 is the major histone H3 lysine 4 trimethyltransferase with role in transcription. EMBO J 30:2817–2828. doi:10.1038/emboj.2011.194

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Avramova Z (2015) Transcriptional “memory” of a stress: transient chromatin and memory (epigenetic) marks at stress-response genes. Plant J 83:149–159. doi:10.1111/tpj.12832

    CAS  Article  PubMed  Google Scholar 

  3. Berry DB, Gasch AP (2008) Stress-activated genomic expression changes serve a preparative role for impending stress in yeast. Mol Biol Cell 19:4580–4587. doi:10.1091/mbc.E07-07-0680

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Bevington SL, Cauchy P, Piper J et al (2016) Inducible chromatin priming is associated with the establishment of immunological memory in T cells. EMBO J 35:515–535. doi:10.15252/embj.201592534

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Brickner DG, Cajigas I, Fondufe-Mittendorf Y et al (2007) H2A.Z-Mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol 5:e81. doi:10.1371/journal.pbio.0050081.st001

    Article  PubMed  PubMed Central  Google Scholar 

  6. Briggs SD, Bryk M, Strahl BD et al (2001) Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev 15:3286–3295

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Capelson M, Liang Y, Schulte R et al (2010) Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell 140:372–383. doi:10.1016/j.cell.2009.12.054

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Conrath U (2011) Molecular aspects of defence priming. Trends Plant Sci 16:524–531. doi:10.1016/j.tplants.2011.06.004

    CAS  Article  PubMed  Google Scholar 

  9. Ding Y, Fromm M, Avramova Z (2012) Multiple exposures to drought “train” transcriptional responses in Arabidopsis. Nat Commun 3:740. doi:10.1038/ncomms1732

    Article  PubMed  Google Scholar 

  10. Ding Y, Liu N, Virlouvet L et al (2013) Four distinct types of dehydration stress memory genes in Arabidopsis thaliana. BMC Plant Biol 13:229. doi:10.1186/1471-2229-13-229

    Article  PubMed  PubMed Central  Google Scholar 

  11. D’Urso A, Brickner JH (2014) Mechanisms of epigenetic memory. Trends Genet 30:230–236. doi:10.1016/j.tig.2014.04.004

    Article  PubMed  PubMed Central  Google Scholar 

  12. D’Urso A, Takahashi YH, Xiong B et al (2016) Set1/COMPASS and Mediator are repurposed to promote epigenetic transcriptional memory. Elife. doi:10.7554/eLife.16691

    PubMed  PubMed Central  Google Scholar 

  13. Fujita A, Kikuchi Y, Kuhara S et al (1989) Domains of the SFL1 protein of yeasts are homologous to Myc oncoproteins or yeast heat–shock transcription factor. Gene 85:321–328

    CAS  Article  PubMed  Google Scholar 

  14. Gasch AP, Spellman PT, Kao CM et al (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Gems D, Partridge L (2008) Stress-response hormesis and aging: “that which does not kill us makes us stronger”. Cell Metab 7(3):200–203. doi:10.1016/j.cmet.2008.01.001

    CAS  Article  PubMed  Google Scholar 

  16. Gialitakis M, Arampatzi P, Makatounakis T, Papamatheakis J (2010) Gamma interferon-dependent transcriptional memory via relocalization of a gene locus to PML nuclear bodies. Mol Cell Biol 30:2046–2056. doi:10.1128/MCB.00906-09

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Guan Q, Haroon S, Bravo DG et al (2012) Cellular memory of acquired stress resistance in Saccharomyces cerevisiae. Genetics 192:495–505. doi:10.1534/genetics.112.143016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Hilker M, Schwachtje J, Baier M et al (2016) Priming and memory of stress responses in organisms lacking a nervous system. Biol Rev Camb Philos Soc 91:1118–1133. doi:10.1111/brv.12215

    Article  PubMed  Google Scholar 

  19. Ho Y-H, Gasch AP (2015) Exploiting the yeast stress-activated signaling network to inform on stress biology and disease signaling. Curr Genet 61:503–511. doi:10.1007/s00294-015-0491-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Hughes CM, Rozenblatt-Rosen O, Milne TA et al (2004) Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol Cell 13:587–597

    CAS  Article  PubMed  Google Scholar 

  21. Jeronimo C, Robert F (2014) Kin28 regulates the transient association of Mediator with core promoters. Nat Struct Mol Biol 21:449–455. doi:10.1038/nsmb.2810

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Kim T, Buratowski S (2009) Dimethylation of H3K4 by Set1 recruits the Set3 histone deacetylase complex to 5′ transcribed regions. Cell 137:259–272. doi:10.1016/j.cell.2009.02.045

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Kim T, Xu Z, Clauder-Münster S et al (2012) Set3 HDAC mediates effects of overlapping noncoding transcription on gene induction kinetics. Cell 150:1158–1169. doi:10.1016/j.cell.2012.08.016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Krogan NJ, Dover J, Khorrami S et al (2002) COMPASS, a histone H3 (Lysine 4) methyltransferase required for telomeric silencing of gene expression. J Biol Chem 277:10753–10755

    CAS  Article  PubMed  Google Scholar 

  25. Kundu S, Horn PJ, Peterson CL (2007) SWI/SNF is required for transcriptional memory at the yeast GAL gene cluster. Genes Dev 21:997–1004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Lämke J, Brzezinka K, Altmann S, Baurle I (2016) A hit-and-run heat shock factor governs sustained histone methylation and transcriptional stress memory. EMBO J 35:162–175. doi:10.15252/embj.201592593

    Article  PubMed  Google Scholar 

  27. Lee J-H, Tate CM, You J-S, Skalnik DG (2007) Identification and characterization of the human Set1B histone H3-Lys(4) methyltransferase complex. J Biol Chem 282:13419–13428. doi:10.1074/jbc.M609809200

    CAS  Article  PubMed  Google Scholar 

  28. Light WH, Brickner DG, Brand VR, Brickner JH (2010) Interaction of a DNA zip code with the nuclear pore complex promotes H2A.Z incorporation and nbsp; INO1 transcriptional memory. Mol Cell 40:112–125. doi:10.1016/j.molcel.2010.09.007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Light WH, Freaney J, Sood V et al (2013) A conserved role for human Nup98 in altering chromatin structure and promoting epigenetic transcriptional memory. PLoS Biol 11:e1001524. doi:10.1371/journal.pbio.1001524

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Liu N, Ding Y, Fromm M, Avramova Z (2014) Different gene-specific mechanisms determine the “revised-response” memory transcription patterns of a subset of A. thaliana dehydration stress responding genes. Nucl Acids Res 42:5556–5566. doi:10.1093/nar/gku220

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Maxwell CS, Kruesi WS, Core LJ et al (2014) Pol II docking and pausing at growth and stress genes in C. elegans. Cell Rep 6:455–466. doi:10.1016/j.celrep.2014.01.008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Mohan M, Herz H-M, Smith ER et al (2011) The COMPASS family of H3K4 methylases in Drosophila. Mol Cell Biol 31:4310–4318. doi:10.1128/MCB.06092-11

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Pavri R, Lewis B, Kim T-K et al (2005) PARP-1 determines specificity in a retinoid signaling pathway via direct modulation of mediator. Mol Cell 18:83–96. doi:10.1016/j.molcel.2005.02.034

    CAS  Article  PubMed  Google Scholar 

  34. Petruk S, Sedkov Y, Smith S et al (2001) Trithorax and dCBP acting in a complex to maintain expression of a homeotic gene. Science 294:1331–1334. doi:10.1126/science.1065683

    CAS  Article  PubMed  Google Scholar 

  35. Pigliucci M (2005) Evolution of phenotypic plasticity: where are we going now? Trends Ecol Evol (Amst) 20:481–486. doi:10.1016/j.tree.2005.06.001

    Article  Google Scholar 

  36. Ragunathan K, Jih G, Moazed D (2015) Epigenetic inheritance uncoupled from sequence-specific recruitment. Science 348:1258699. doi:10.1126/science.1258699

    Article  PubMed  Google Scholar 

  37. Robertson LS, Fink GR (1998) The three yeast A kinases have specific signaling functions in pseudohyphal growth. Proc Natl Acad Sci USA 95:13783–13787

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Roguev A, Schaft D, Shevchenko A et al (2001) The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. EMBO J 20:7137–7148. doi:10.1093/emboj/20.24.7137

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Sani E, Herzyk P, Perrella G et al (2013) Hyperosmotic priming of Arabidopsis seedlings establishes a long-term somatic memory accompanied by specific changes of the epigenome. Genome Biol 14:R59. doi:10.1186/gb-2013-14-6-r59

    Article  PubMed  PubMed Central  Google Scholar 

  40. Santos-Rosa H, Schneider R, Bannister AJ et al (2002) Active genes are tri-methylated at K4 of histone H3. Nature 419:407–411. doi:10.1038/nature01080

    CAS  Article  PubMed  Google Scholar 

  41. Schaner CE, Deshpande G, Schedl PD, Kelly WG (2003) A conserved chromatin architecture marks and maintains the restricted germ cell lineage in worms and flies. Dev Cell 5:747–757

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Shilatifard A (2008) Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr Opin Cell Biol 20(3):341–348. doi:10.1016/j.ceb.2008.03.019

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Solé C, Nadal-Ribelles M, de Nadal E, Posas F (2015) A novel role for lncRNAs in cell cycle control during stress adaptation. Curr Genet 61:299–308. doi:10.1007/s00294-014-0453-y

    Article  PubMed  Google Scholar 

  44. Song W, Carlson M (1998) Srb/mediator proteins interact functionally and physically with transcriptional repressor Sfl1. EMBO J 17:5757–5765. doi:10.1093/emboj/17.19.5757

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Tan-Wong SM, Wijayatilake HD, Proudfoot NJ (2009) Gene loops function to maintain transcriptional memory through interaction with the nuclear pore complex. Genes Dev 23:2610–2624. doi:10.1101/gad.1823209

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Wong KH, Jin Y, Struhl K (2014) TFIIH phosphorylation of the Pol II CTD stimulates mediator dissociation from the preinitiation complex and promoter escape. Mol Cell 54:601–612. doi:10.1016/j.molcel.2014.03.024

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Wu M, Wang PF, Lee J-S et al (2008) Molecular regulation of H3K4 trimethylation by Wdr82, a component of human Set1/COMPASS. Mol Cell Biol 28:7337–7344. doi:10.1128/MCB.00976-08

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Zacharioudakis I, Gligoris T, Tzamarias D (2007) A yeast catabolic enzyme controls transcriptional memory. Curr Biol 17:2041–2046

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Brickner laboratory for helpful comments on the manuscript and Nate Delage for help with the figures. The authors are supported by NIH R01 GM118712 (JHB) and T32 GM008061 (AD).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jason H. Brickner.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

D’Urso, A., Brickner, J.H. Epigenetic transcriptional memory. Curr Genet 63, 435–439 (2017). https://doi.org/10.1007/s00294-016-0661-8

Download citation

Keywords

  • Epigenetics
  • Chromatin
  • Transcription
  • Memory
  • Environmental response
  • Nuclear pore complex
  • Mediator
  • Histone methylation
  • Transcription factor