Skip to main content
Log in

Post-translocational adaptation drives evolution through genetic selection and transcriptional shift in Saccharomyces cerevisiae

  • Original Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Adaptation by natural selection might improve the fitness of an organism and its probability to survive in unfavorable environmental conditions. Decoding the genetic basis of adaptive evolution is one of the great challenges to deal with. To this purpose, Saccharomyces cerevisiae has been largely investigated because of its short division time, excellent aneuploidy tolerance and the availability of the complete sequence of its genome with a thorough genome database. In the past, we developed a system, named bridge-induced translocation, to trigger specific, non-reciprocal translocations, exploiting the endogenous recombination system of budding yeast. This technique allows users to generate a heterogeneous population of cells with different aneuploidies and increased phenotypic variation. In this work, we demonstrate that ad hoc chromosomal translocations might induce adaptation, fostering selection of thermo-tolerant yeast strains with improved phenotypic fitness. This “yeast eugenomics” correlates with a shift to enhanced expression of genes involved in stress response, heat shock as well as carbohydrate metabolism. We propose that the bridge-induced translocation is a suitable approach to generate adapted, physiologically boosted strains for biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson CA, Roberts S, Zhang H, Kelly CM, Kendall A, Lee C, Gerstenberger J, Koenig AB, Kabeche R, Gladfelter AS (2015) Ploidy variation in multinucleate cells changes under stress. Mol Biol Cell 26:1129–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aragona M, Valente MT (2015) Genetic transformation of the tomato pathogen Pyrenochaeta lycopersici allowed gene knockout using a split-marker approach. Curr Genet 61:211–220

    Article  CAS  PubMed  Google Scholar 

  • Arnak R, Altun B, Tosato V, Bruschi CV (2016) Multiple antibiotic resistance plasmids allow scalable PCR-mediated DNA manipulation and near-zero background cloning. Food Technol Biotechnol. doi:10.17113/ftb.54.03.16.4230

    PubMed  PubMed Central  Google Scholar 

  • Auesukaree C, Koedrith P, Saenpayavai P, Asvarak T, Benjaphokee S, Sugiyama M, Kaneko Y, Harashima S, Boonchird C (2012) Characterization and gene expression profiles of thermotolerant S. cerevisiae isolates from Thai fruits. J Biosci Bioeng 114:144–149

    Article  CAS  PubMed  Google Scholar 

  • Brion C, Ambroset C, Sanchez I, Legras JL, Blondin B (2013) Differential adaptation to multi-stressed conditions of wine fermentation revealed by variations in yeast regulatory networks. BMC Genom 14:681

    Article  CAS  Google Scholar 

  • Burke DT, Carle GF, Olson MV (1987) Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236:806–812

    Article  CAS  PubMed  Google Scholar 

  • Camarasa C, Sanchez I, Brial P, Bigey F, Dequin S (2011) Phenotypic landscape of S. cerevisiae during wine fermentation: evidence for origin-dependent metabolic traits. PLoS One 6:e25147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan CY, Zhu J, Schiestl RH (2011) Effect of rad50 mutation on illegitimate recombination in S. cerevisiae. Mol Genet Genomics 285:471–484

    Article  CAS  PubMed  Google Scholar 

  • Chang SL, Lai HY, Tung SY, Leu JY (2013) Dynamic large-scale chromosomal rearrangements fuel rapid adaptation in yeast populations. PLoS Genet 9:e1003232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Divol B, du Toit M, Duckitt E (2012) Surviving in the presence of sulphur dioxide: strategies developed by wine yeasts. Appl Microbiol Biotechnol 95:601–613

    Article  CAS  PubMed  Google Scholar 

  • Dodgson SE, Kim S, Costanzo M, Baryshnikova A, Morse DL, Kaiser CA, Boone C, Amon A (2016) Chromosome specific and global effects of aneuploidy in S. cerevisiae. Genetics 202:1395–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudasova Z, Dudas A, Chovanec M (2004) Non-homologous end-joining factors of S. cerevisiae. FEMS Microbiol Rev 28:581–601

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Kan F, Wagnon JL, Storey AJ, Protacio RM, Davidson MK, Wahls WP (2014) Rapid, efficient and precise allele replacement in the fission yeast Schizosaccharomyces pombe. Curr Genet 60:109–119

    Article  CAS  PubMed  Google Scholar 

  • Gibney PA, Lu C, Caudy AA, Hess DC, Botstein D (2013) Yeast metabolic and signaling genes are required for heat-shock survival and have little overlap with the heat-induced genes. Proc Natl Acad Sci USA 110:E4393–E4402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goarin A, Silar P, Malagnac F (2015) Gene replacement in Penicillium roqueforti. Curr Genet 61:203–210

    Article  CAS  PubMed  Google Scholar 

  • Kang GY, Kim EH, Lee HJ, Gil NY, Cha HJ, Lee YS (2015) Heat schock factor 1, an inhibitor of non-homologous end joining repair. Oncotarget 6:29712–29724

    PubMed  PubMed Central  Google Scholar 

  • Kikukawa H, Sakuradani E, Nakatani M, Ando A, Okuda T, Sakamoto T, Ochiai M, Shimizu S, Ogawa J (2015) Gene targeting in the oil-producing fungus Mortierella alpina 1S-4 and construction of a strain producing a valuable polyunsaturated fatty acid. Curr Genet 61:579–589

    Article  CAS  PubMed  Google Scholar 

  • Klinner U, Schäfer B (2004) Genetic aspects of targeted insertion mutagenesis in yeast. FEMS Microbiol Rev 28:201–223

    Article  CAS  PubMed  Google Scholar 

  • Kraus E, Leung WY, Haber JE (2001) Break-induced replication: a review and an example in budding yeast. Proc Natl Acad Sci USA 98:8255–8262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legras JL, Erny C, Jeune CL, Lollier M, Adolphe Y, Demuyter C, Delobel P, Blondin B, Karst F (2010) Activation of two different resistance mechanisms in S. cerevisiae upon exposure to octanoic and decanoic acids. Appl Environ Microbiol 76:7526–7535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mjelle R, Hegre SA, Aas PA, Slupphaug G, Drabløs E, Saetrom P, Krokan HE (2015) Cell cycle regulation of human DNA repair and chromatin remodeling genes. DNA Repair 30:53–67

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Yamamoto M, Saito K, Ando A, Shima J (2014) Identification of a gene, FMP21, whose expression levels are involved in thermotolerance in S. cerevisiae. AMB Express 4:67

    Article  PubMed  PubMed Central  Google Scholar 

  • Nikitin D, Tosato V, Zavec AB, Bruschi CV (2008) Cellular and molecular effects of non-reciprocal chromosome translocation in S. cerevisiae. Proc Natl Acad Sci USA 105:9703–9708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikitin D, Bruschi CV, Sims J, Breitenbach M, Rinnerthaler M, Tosato V (2014) Chromosome translocation may lead to PRK1-dependent anticancer drug resistance in yeast via endocytic actin network deregulation. Eur J Cell Biol 93:145–156

    Article  CAS  PubMed  Google Scholar 

  • Randolph LF (1932) Some effects of high temperature on polyploidy and other variations in maize. Proc Natl Acad Sci USA 18:222–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riezman H (2004) Why do cells require heat shock proteins to survive heat stress? Cell Cycle 3:61–63

    Article  CAS  PubMed  Google Scholar 

  • Rossi B, Noel P, Bruschi CV (2010) Different aneuploidies arise from the same bridge- induced chromosomal translocation event in S. cerevisiae. Genetics 186:775–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roukos V, Misteli T (2014) The biogenesis of chromosomal translocations. Nat Cell Biol 16:293–300

    Article  CAS  PubMed  Google Scholar 

  • Satomura A, Katsuyama Y, Miura N, Kuroda K, Tomio A, Bamba T, Fukusaki E, Ueda M (2013) Acquisition of thermotolerant yeast S. cerevisiae by breeding via stepwise adaptation. Biotechnol Prog 29:1116–1123

    Article  CAS  PubMed  Google Scholar 

  • Savitree L, Chutim AS, Wichien Y (2007) Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated K. marxianus. Bioresour Technol 98:3367–3374

    Article  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C (T) method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Selmecki AM, Maruvka YE, Richmond PA, Guillet M, Shoresh N, Sorenson AL, De S, Kishony R, Michor F, Dowell R (2015) Polyploidy can drive rapid adaptation in yeast. Nature 519:349–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sims J, Bruschi CV, Bertin C, West N, Breitenbach M, Schroeder S, Eisenberg T, Rinnerthaler M, Raspor P, Tosato V (2016) High reactive oxygen species levels are detected at the end of the chronological life span of translocant yeast cells. Mol Genet Genom 291:423–435

    Article  CAS  Google Scholar 

  • Sridhar M, Kiran SN, Venkateswar RL (2002) Effect of UV radiation on thermotolerance, ethanol tolerance and osmotolerance of S. cerevisiae VS1 and VS3 strains. Bioresour Technol 83:199–202

    Article  CAS  PubMed  Google Scholar 

  • Suhane T, Laskar S, Advani S, Roy N, Varunan S, Bhattacharyya D, Bhattacharyya S, Battacharyya MK (2015) Both the charged linker region and ATPase domain of Hsp90 are essential for Rad51-dependent DNA repair. Eukaryot Cell 14:64–77

    Article  PubMed  Google Scholar 

  • Teste MA, Duquenne M, François JM, Parrou JL (2009) Validation of reference genes for quantitative expression analysis by real-time RT-PCR in S. cerevisiae. BMC Mol Biol 10:99

    Article  PubMed  PubMed Central  Google Scholar 

  • Tosato V, Bruschi CV (2015) Per aspera ad astra: when harmful chromosomal translocation become a plus value in genetic evolution. Lessons from S. cerevisiae. Microbial Cell 2:363–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tosato V, Waghmare SK, Bruschi CV (2005) Non-reciprocal chromosomal bridge- induced translocation (BIT) by targeted DNA integration in yeast. Chromosoma 114:15–27

    Article  CAS  PubMed  Google Scholar 

  • Tosato V, Nicolini C, Bruschi CV (2009) DNA bridging of yeast chromosomes VIII leads to near-reciprocal translocation and loss of heterozygosity with minor cellular defects. Chromosoma 118:179–191

    Article  CAS  PubMed  Google Scholar 

  • Tosato V, Sidari S, Bruschi CV (2013a) Bridge-induced chromosome translocation in yeast relies upon a Rad54/Rdh54-dependent, Pol32-independent pathway. PLoS One 8:e60926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tosato V, Grüning NM, Breitenbach M, Arnak R, Ralser M, Bruschi CV (2013b) Genomic instability and Warburg effect: two yeast models for cancer cells. Front Oncol 2:212. doi:10.3389/fonc.2012.00212

    Article  PubMed  PubMed Central  Google Scholar 

  • Unnikrishnan I, Miller S, Meinke M, La Porte DC (2003) Multiple positive and negative elements involved in the regulation of expression of GSY1 in S. cerevisiae. J Biol Chem 278:26450–26457

    Article  CAS  PubMed  Google Scholar 

  • Wach A, Brachat A, Pöhlmann R, Philippsen P (1994) New heterologous modules for classical or PCR-based gene disruptions in S. cerevisiae. Yeast 10:1793–1808

    Article  CAS  PubMed  Google Scholar 

  • Wallace-Salinas V, Gorwa-Grauslund MF (2013) Adaptive evolution of an industrial strain of S. cerevisiae for combined tolerance to inhibitors and temperature. Biotechnol Biofuels 6:151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wurtele H, Little KCE, Chartrand P (2003) Illegitimate DNA integration in mammalian cells. Gene Ther 10:1791–1799

    Article  CAS  PubMed  Google Scholar 

  • Zang Q, Fu Y, Wang Y, Han J, Lv J, Wang S (2011) Improved ethanol production of a newly isolated thermo-tolerant S. cerevisiae strain after high-energy-pulse- electron beam. J Appl Microbiol 112:280–288

    Article  Google Scholar 

  • Zimmer A, Durand C, Loira N, Durrens P, Sherman DJ, Marullo P (2014) QTL dissection of lag phase in wine fermentation reveals a new translocation responsible for S. cerevisiae adaptation to sulfites. PLoS One 9:e86298

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Jean-Luc Parou for having provided the plasmid pJL49 and Beatrice Rossi for having shared useful material and unpublished observations on SUSU translocants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Tosato.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

NW and VT were supported by Prosol SpA (I) and Crescendo Biologics Ltd (UK), respectively.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the Authors.

Additional information

Communicated by M. Kupiec.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tosato, V., Sims, J., West, N. et al. Post-translocational adaptation drives evolution through genetic selection and transcriptional shift in Saccharomyces cerevisiae . Curr Genet 63, 281–292 (2017). https://doi.org/10.1007/s00294-016-0635-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-016-0635-x

Keywords

Navigation