Current Genetics

, Volume 63, Issue 1, pp 79–90 | Cite as

The cell envelope stress response of Bacillus subtilis: from static signaling devices to dynamic regulatory network

  • Jara Radeck
  • Georg Fritz
  • Thorsten MascherEmail author


The cell envelope stress response (CESR) encompasses all regulatory events that enable a cell to protect the integrity of its envelope, an essential structure of any bacterial cell. The underlying signaling network is particularly well understood in the Gram-positive model organism Bacillus subtilis. It consists of a number of two-component systems (2CS) and extracytoplasmic function σ factors that together regulate the production of both specific resistance determinants and general mechanisms to protect the envelope against antimicrobial peptides targeting the biogenesis of the cell wall. Here, we summarize the current picture of the B. subtilis CESR network, from the initial identification of the corresponding signaling devices to unraveling their interdependence and the underlying regulatory hierarchy within the network. In the course of detailed mechanistic studies, a number of novel signaling features could be described for the 2CSs involved in mediating CESR. This includes a novel class of so-called intramembrane-sensing histidine kinases (IM-HKs), which—instead of acting as stress sensors themselves—are activated via interprotein signal transfer. Some of these IM-HKs are involved in sensing the flux of antibiotic resistance transporters, a unique mechanism of responding to extracellular antibiotic challenge.


Cell wall antibiotic ECF sigma factor Lipid II cycle Stress response Signal transduction Two-component system 



The authors would like to acknowledge the contributions of numerous co-workers of the Mascher group, who by their dedication, hard work and intellectual input shaped our picture of the cell envelope stress response of B. subtilis in the past decade.

Compliance with ethical standards


Work on the cell envelope stress response of B. subtilis in the Mascher and Fritz groups was continuously supported by Grants from the Deutsche Forschungsgemeinschaft (DFG) (Grants MA 3269, MA2837/1-3, and MA2837/3-1 to TM as well as Grant FR 3673/1-2 to GF).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Bernard R, Guiseppi A, Chippaux M, Foglino M, Denizot F (2007) Resistance to bacitracin in Bacillus subtilis: unexpected requirement of the BceAB ABC transporter in the control of expression of its own structural genes. J Bacteriol 189:8636–8642. doi: 10.1128/jb.01132-07 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bugg TD, Braddick D, Dowson CG, Roper DI (2011) Bacterial cell wall assembly: still an attractive antibacterial target. Trends Biotechnol 29:167–173. doi: 10.1016/j.tibtech.2010.12.006 CrossRefPubMedGoogle Scholar
  3. Butcher BG, Lin Y-P, Helmann JD (2007) The yydFGHIJ operon of Bacillus subtilis encodes a peptide that induces the LiaRS two-component system. J Bacteriol 189:8616–8625. doi: 10.1128/JB.01181-07 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cao M, Helmann JD (2002) Regulation of the Bacillus subtilis bcrC bacitracin resistance gene by two extracytoplasmic function sigma factors. J Bacteriol 184:6123–6129. doi: 10.1128/JB.184.22.6123-6129.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cao M, Kobel PA, Morshedi MM, Wu MF, Paddon C, Helmann JD (2002) Defining the Bacillus subtilis σW regulon: a comparative analysis of promoter consensus search, run-off transcription/macroarray analysis (ROMA), and transcriptional profiling approaches. J Mol Biol 316:443–457. doi: 10.1006/jmbi.2001.5372 CrossRefPubMedGoogle Scholar
  6. Dintner S, Staron A, Berchtold E, Petri T, Mascher T, Gebhard S (2011) Co-evolution of ABC-transporters and two-component regulatory systems as resistance modules against antimicrobial peptides in Firmicutes bacteria. J Bacteriol 193:3851–3862. doi: 10.1128/JB.05175-11 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dintner S, Heermann R, Fang C, Jung K, Gebhard S (2014) A sensory complex consisting of an ATP-binding cassette transporter and a two-component regulatory system controls bacitracin resistance in Bacillus subtilis. J Biol Chem 289:27899–27910. doi: 10.1074/jbc.M114.596221 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dufresne K, Paradis-Bleau C (2015) Biology and assembly of the bacterial envelope. In: Krogan PJN, Babu PM (eds) Prokaryotic systems biology. Springer, Cham, pp 41–76CrossRefGoogle Scholar
  9. Economou NJ, Cocklin S, Loll PJ (2013) High-resolution crystal structure reveals molecular details of target recognition by bacitracin. Proc Natl Acad Sci USA 110:14207–14212. doi: 10.1073/pnas.1308268110 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Eiamphungporn W, Helmann JD (2008) The Bacillus subtilis σM regulon and its contribution to cell envelope stress responses. Mol Microbiol 67:830–848. doi: 10.1111/j.1365-2958.2007.06090.x CrossRefPubMedPubMedCentralGoogle Scholar
  11. Fritz G, Dintner S, Treichel NS, Radeck J, Gerland U, Mascher T, Gebhard S (2015) A new way of sensing: need-based activation of antibiotic resistance by a flux-sensing mechanism. MBio 6:e00975. doi: 10.1128/mBio.00975-15 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Gauntlett JC, Gebhard S, Keis S, Manson JM, Pos KM, Cook GM (2008) Molecular analysis of BcrR, a membrane-bound bacitracin sensor and DNA-binding protein from Enterococcus faecalis. J Biol Chem 283:8591–8600. doi: 10.1074/jbc.M709503200 CrossRefPubMedGoogle Scholar
  13. Gebhard S, Gaballa A, Helmann JD, Cook GM (2009) Direct stimulus perception and transcription activation by a membrane-bound DNA binding protein. Mol Microbiol 73:482–491. doi: 10.1111/j.1365-2958.2009.06787.x CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gonzalez-Pastor JE (2011) Cannibalism: a social behavior in sporulating Bacillus subtilis. FEMS Microbiol Rev 35:415–424. doi: 10.1111/j.1574-6976.2010.00253.x CrossRefPubMedGoogle Scholar
  15. Helmann JD (2016) Bacillus subtilis extracytoplasmic function (ECF) sigma factors and defense of the cell envelope. Curr Opin Microbiol 30:122–132. doi: 10.1016/j.mib.2016.02.002 CrossRefPubMedGoogle Scholar
  16. Hiron A, Falord M, Valle J, Debarbouille M, Msadek T (2011) Bacitracin and nisin resistance in Staphylococcus aureus: a novel pathway involving the BraS/BraR two-component system (SA2417/SA2418) and both the BraD/BraE and VraD/VraE ABC transporters. Mol Microbiol 81:602–622. doi: 10.1111/j.1365-2958.2011.07735.x CrossRefPubMedGoogle Scholar
  17. Höfler C, Heckmann J, Fritsch A, Popp P, Gebhard S, Fritz G, Mascher T (2016) Cannibalism stress response in Bacillus subtilis. Microbiology 162:164–176. doi: 10.1099/mic.0.000176 CrossRefPubMedGoogle Scholar
  18. Horsburgh MJ, Moir A (1999) σM, an ECF RNA polymerase sigma factor of Bacillus subtilis 168, is essential for growth and survival in high concentrations of salt. Mol Microbiol 32:41–50. doi: 10.1046/j.1365-2958.1999.01323.x CrossRefPubMedGoogle Scholar
  19. Inoue H, Suzuki D, Asai K (2013) A putative bactoprenol glycosyltransferase, CsbB, in Bacillus subtilis activates SigM in the absence of co-transcribed YfhO. Biochem Biophys Res Commun 436:6–11. doi: 10.1016/j.bbrc.2013.04.064 CrossRefPubMedGoogle Scholar
  20. Jeong DW, Cho H, Jones MB, Shatzkes K, Sun F, Ji Q, Liu Q, Peterson SN, He C, Bae T (2012) The auxiliary protein complex SaePQ activates the phosphatase activity of sensor kinase SaeS in the SaeRS two-component system of Staphylococcus aureus. Mol Microbiol 86:331–348. doi: 10.1111/j.1365-2958.2012.08198.x CrossRefPubMedPubMedCentralGoogle Scholar
  21. Jordan S, Junker A, Helmann JD, Mascher T (2006) Regulation of LiaRS-dependent gene expression in Bacillus subtilis: identification of inhibitor proteins, regulator binding sites and target genes of a conserved cell envelope stress-sensing two-component system. J Bacteriol 188:5153–5166. doi: 10.1128/JB.00310-06 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Jordan S, Hutchings MI, Mascher T (2008) Cell envelope stress response in Gram-positive bacteria. FEMS Microbiol Rev 32:107–146. doi: 10.1111/j.1574-6976.2007.00091.x CrossRefPubMedGoogle Scholar
  23. Joseph P, Fichant G, Quentin Y, Denizot F (2002) Regulatory relationship of two-component and ABC transport systems and clustering of their genes in the Bacillus/Clostridium group, suggest a functional link between them. J Mol Microbiol Biotechnol 4:503–513PubMedGoogle Scholar
  24. Kallenberg F, Dintner S, Schmitz R, Gebhard S (2013) Identification of regions important for resistance and signalling within the antimicrobial peptide transporter BceAB of Bacillus subtilis. J Bacteriol 195:3287–3297. doi: 10.1128/JB.00419-13 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kingston AW, Liao X, Helmann JD (2013) Contributions of the σW, σM and σX regulons to the lantibiotic resistome of Bacillus subtilis. Mol Microbiol 90:502–518. doi: 10.1111/mmi.12380 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kingston AW, Zhao H, Cook GM, Helmann JD (2014) Accumulation of heptaprenyl diphosphate sensitizes Bacillus subtilis to bacitracin: implications for the mechanism of resistance mediated by the BceAB transporter. Mol Microbiol 93:37–49. doi: 10.1111/mmi.12637 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kovács ÁT (2016) Bacterial differentiation via gradual activation of global regulators. Curr Genet 62:125–128. doi: 10.1007/s00294-015-0524-8 CrossRefPubMedGoogle Scholar
  28. Lee YH, Helmann JD (2013) Reducing the level of undecaprenyl pyrophosphate synthase has complex effects on susceptibility to cell wall antibiotics. Antimicrob Agents Chemother 57:4267–4275. doi: 10.1128/aac.00794-13 CrossRefPubMedCentralGoogle Scholar
  29. Luttmann D, Gopel Y, Gorke B (2012) The phosphotransferase protein EIIA(Ntr) modulates the phosphate starvation response through interaction with histidine kinase PhoR in Escherichia coli. Mol Microbiol 86:96–110. doi: 10.1111/j.1365-2958.2012.08176.x CrossRefPubMedGoogle Scholar
  30. Mascher T (2006) Intramembrane-sensing histidine kinases: a new family of cell envelope stress sensors in Firmicutes bacteria. FEMS Microbiol Lett 264:133–144. doi: 10.1111/j.1574-6968.2006.00444.x CrossRefPubMedGoogle Scholar
  31. Mascher T (2014) Bacterial (intramembrane-sensing) histidine kinases: signal transfer rather than stimulus perception. Trends Microbiol 22:559–565. doi: 10.1016/j.tim.2014.05.006 CrossRefPubMedGoogle Scholar
  32. Mascher T, Margulis NG, Wang T, Ye RW, Helmann JD (2003) Cell wall stress responses in Bacillus subtilis: the regulatory network of the bacitracin stimulon. Mol Microbiol 50:1591–1604. doi: 10.1046/j.1365-2958.2003.03786.x CrossRefPubMedGoogle Scholar
  33. Mascher T, Zimmer SL, Smith TA, Helmann JD (2004) Antibiotic-inducible promoter regulated by the cell envelope stress-sensing two-component system LiaRS of Bacillus subtilis. Antimicrob Agents Chemother 48:2888–2896. doi: 10.1128/AAC.48.8.2888-2896.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Mascher T, Helmann JD, Unden G (2006) Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev 90:910–938. doi: 10.1128/MMBR.00020-06 CrossRefGoogle Scholar
  35. Mascher T, Hachmann AB, Helmann JD (2007) Regulatory overlap and functional redundancy among Bacillus subtilis extracytoplasmic function σ factors. J Bacteriol 189:6919–6927. doi: 10.1128/JB.00904-07 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Meeske AJ, Sham LT, Kimsey H, Koo BM, Gross CA, Bernhardt TG, Rudner DZ (2015) MurJ and a novel lipid II flippase are required for cell wall biogenesis in Bacillus subtilis. Proc Natl Acad Sci USA 112:6437–6442. doi: 10.1073/pnas.1504967112 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ming L-J, Epperson JD (2002) Metal binding and structure-activity relationship of the metalloantibiotic peptide bacitracin. J Inorg Biochem 91:46–58. doi: 10.1016/S0162-0134(02)00464-6 CrossRefPubMedGoogle Scholar
  38. Ohki R, Giyanto Tateno K, Masuyama W, Moriya S, Kobayashi K, Ogasawara N (2003) The BceRS two-component regulatory system induces expression of the bacitracin transporter, BceAB, in Bacillus subtilis. Mol Microbiol 49:1135–1144. doi: 10.1046/j.1365-2958.2003.03653.x CrossRefPubMedGoogle Scholar
  39. Petersohn A, Brigulla M, Haas S, Hoheisel JD, Völker U, Hecker M (2001) Global analysis of the general stress response of Bacillus subtilis. J Bacteriol 183:5617–5631. doi: 10.1128/JB.183.19.5617-5631.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Pietiäinen M, Gardemeister M, Mecklin M, Leskela S, Sarvas M, Kontinen VP (2005) Cationic antimicrobial peptides elicit a complex stress response in Bacillus subtilis that involves ECF-type sigma factors and two-component signal transduction systems. Microbiology 151:1577–1592. doi: 10.1099/mic.0.27761-0 CrossRefPubMedGoogle Scholar
  41. Pollak S, Omer Bendori S, Eldar A (2015) A complex path for domestication of B. subtilis sociality. Curr Genet 61:493–496. doi: 10.1007/s00294-015-0479-9 CrossRefPubMedGoogle Scholar
  42. Radeck J, Gebhard S, Orchard PS, Kirchner M, Bauer S, Mascher T, Fritz G (2016) Anatomy of the bacitracin resistance network in Bacillus subtilis. Mol Microbiol 100:607–620. doi: 10.1111/mmi.13336 CrossRefPubMedGoogle Scholar
  43. Rietkötter E, Hoyer D, Mascher T (2008) Bacitracin sensing in Bacillus subtilis. Mol Microbiol 68:768–785. doi: 10.1111/j.1365-2958.2008.06194.x CrossRefPubMedGoogle Scholar
  44. Schneider T, Sahl H-G (2010) An oldie but a goodie—cell wall biosynthesis as antibiotic target pathway. Int J Med Microbiol 300:161–169. doi: 10.1016/j.ijmm.2009.10.005 CrossRefPubMedGoogle Scholar
  45. Schrecke K, Staroń A, Mascher T (2012) Two-component signaling in the Gram-positive envelope stress response: intramembrane-sensing histidine kinases and accessory membrane proteins. In: Gross R, Beier D (eds) Two component systems in bacteria. Horizon Scientific Press, Hethersett, pp 199–229Google Scholar
  46. Schrecke K, Jordan S, Mascher T (2013) Stoichiometry and perturbation studies of the LiaFSR system of Bacillus subtilis. Mol Microbiol 87:769–788. doi: 10.1111/mmi.12130 CrossRefPubMedGoogle Scholar
  47. Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2:a000414. doi: 10.1101/cshperspect.a000414 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Staroń A, Finkeisen DE, Mascher T (2011) Peptide antibiotic sensing and detoxification modules of Bacillus subtilis. Antimicrob Agents Chemother 55:515–525. doi: 10.1128/AAC.00352-10 CrossRefPubMedGoogle Scholar
  49. Storm DR, Strominger JL (1974) Binding of bacitracin to cells and protoplasts of Micrococcus lysodeikticus. J Biol Chem 249:1823–1827PubMedGoogle Scholar
  50. Wecke T, Mascher T (2011) Antibiotic research in the age of omics: from expression profiles to interspecies communication. Antimicrob Chemother 66:2689–2704. doi: 10.1093/jac/dkr373 CrossRefGoogle Scholar
  51. Wecke T, Zühlke D, Mäder U, Jordan S, Voigt B, Pelzer S, Labischinski H, Homuth G, Hecker M, Mascher T (2009) Daptomycin versus friulimicin B: in-depth profiling of Bacillus subtilis cell envelope stress responses. J Antimicrob Chemother 53:1619–1623. doi: 10.1128/aac.01046-08 CrossRefGoogle Scholar
  52. Wecke T, Bauer T, Harth H, Mäder U, Mascher T (2011) The rhamnolipid stress response of Bacillus subtilis. FEMS Microbiol Lett. doi: 10.1111/j.1574-6968.2011.02367.x PubMedGoogle Scholar
  53. Wiegert T, Homuth G, Versteeg S, Schumann W (2001) Alkaline shock induces the Bacillus subtilis σW regulon. Mol Microbiol 41:59–71. doi: 10.1046/j.1365-2958.2001.02489.x CrossRefPubMedGoogle Scholar
  54. Wolf D, Kalamorz F, Wecke T, Juszczak A, Mäder U, Homuth G, Jordan S, Kirstein J, Hoppert M, Voigt B, Hecker M, Mascher T (2010) In-depth profiling of the LiaR response of Bacillus subtilis. J Bacteriol 192:4680–4693. doi: 10.1128/JB.00543-10 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Wolf D, Dominguez-Cuevas P, Daniel RA, Mascher T (2012) Cell envelope stress response in cell wall-deficient L-forms of Bacillus subtilis. Antimicrob Agents Chemother 56:5907–5915. doi: 10.1128/AAC.00770-12 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Yoshimura M, Asai K, Sadaie Y, Yoshikawa H (2004) Interaction of Bacillus subtilis extracytoplasmic function (ECF) sigma factors with the N-terminal regions of their potential anti-sigma factors. Microbiology 150:591–599. doi: 10.1099/mic.0.26712-0 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of MicrobiologyTechnische Universität (TU) DresdenDresdenGermany
  2. 2.LOEWE-Center for Synthetic Microbiology (SYNMIKRO)Philipps-Universität MarburgMarburgGermany

Personalised recommendations