Current Genetics

, Volume 63, Issue 1, pp 117–129 | Cite as

Complete chloroplast genome sequence of a major economic species, Ziziphus jujuba (Rhamnaceae)

  • Qiuyue Ma
  • Shuxian Li
  • Changwei Bi
  • Zhaodong Hao
  • Congrui Sun
  • Ning Ye
Original Article


Ziziphus jujuba is an important woody plant with high economic and medicinal value. Here, we analyzed and characterized the complete chloroplast (cp) genome of Z. jujuba, the first member of the Rhamnaceae family for which the chloroplast genome sequence has been reported. We also built a web browser for navigating the cp genome of Z. jujuba ( Sequence analysis showed that this cp genome is 161,466 bp long and has a typical quadripartite structure of large (LSC, 89,120 bp) and small (SSC, 19,348 bp) single-copy regions separated by a pair of inverted repeats (IRs, 26,499 bp). The sequence contained 112 unique genes, including 78 protein-coding genes, 30 transfer RNAs, and four ribosomal RNAs. The genome structure, gene order, GC content, and codon usage are similar to other typical angiosperm cp genomes. A total of 38 tandem repeats, two forward repeats, and three palindromic repeats were detected in the Z. jujuba cp genome. Simple sequence repeat (SSR) analysis revealed that most SSRs were AT-rich. The homopolymer regions in the cp genome of Z. jujuba were verified and manually corrected by Sanger sequencing. One-third of mononucleotide repeats were found to be erroneously sequenced by the 454 pyrosequencing, which resulted in sequences of 1–4 bases shorter than that by the Sanger sequencing. Analyzing the cp genome of Z. jujuba revealed that the IR contraction and expansion events resulted in ycf1 and rps19 pseudogenes. A phylogenetic analysis based on 64 protein-coding genes showed that Z. jujuba was closely related to members of the Elaeagnaceae family, which will be helpful for phylogenetic studies of other Rosales species. The complete cp genome sequence of Z. jujuba will facilitate population, phylogenetic, and cp genetic engineering studies of this economic plant.


Ziziphus jujuba Rhamnaceae Rosales Chloroplast Genome Evolution 



Funding for this work was provided by the Natural Science Foundation of China (31561123001, 31570662). The work was supported by the Program for Innovative Research Team of the Educational Department of China and in Universities of Jiangsu Province, the Priority Academic Program Development (PAPD) program, and the Doctorate Fellowship Foundation at Nanjing Forestry University.

Supplementary material

294_2016_612_MOESM1_ESM.tif (1.9 mb)
Neighbor-joining phylogenetic tree based on 64 protein-coding genes from 24 plant taxa. The tree was obtained using the Poisson model. Numbers at the nodes are bootstrap support values. (TIFF 1943 kb)
294_2016_612_MOESM2_ESM.doc (16 kb)
Primers used for PCR amplification to fill gaps in the assembled Z. jujuba chloroplast sequence. (DOC 16 kb)
294_2016_612_MOESM3_ESM.doc (36 kb)
Seventeen genes in the Ziziphus jujuba chloroplast genome that contained introns. (DOC 35 kb)
294_2016_612_MOESM4_ESM.doc (77 kb)
Repeat sequences in the Ziziphus jujuba chloroplast genome. (DOC 77 kb)
294_2016_612_MOESM5_ESM.doc (192 kb)
Distribution of SSRs in the Ziziphus jujuba chloroplast genome. (DOC 191 kb)
294_2016_612_MOESM6_ESM.doc (48 kb)
Details of the chloroplast genome sequences used for the phylogenetic analysis. (DOC 48 kb)
294_2016_612_MOESM7_ESM.xls (41 kb)
Primers used for PCR amplification to test the accuracy of mononucleotide repeats. (XLS 41 kb)
294_2016_612_MOESM8_ESM.doc (26 kb)
Verification of the homopolymers in the Ziziphus jujuba cp genome. (DOC 25 kb)


  1. Asif MH, Mantri SS, Sharma A, Srivastava A, Trivedi I, Gupta P, Mohanty CS, Sawant SV, Tuli R (2010) Complete sequence and organisation of the jatropha curcas (euphorbiaceae) chloroplast genome. Tree Genet Genomes 6(6):941–952. doi: 10.1007/s11295-010-0303-0 CrossRefGoogle Scholar
  2. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580CrossRefPubMedPubMedCentralGoogle Scholar
  3. Blazier JC, Guisinger MM, Jansen RK (2011) Recent loss of plastid-encoded ndh genes within Erodium (Geraniaceae). Plant Mol Biol 76:263–272CrossRefGoogle Scholar
  4. Bremer B, Bremer K, Chase MW, Fay MF, Reveal JL, Soltis DE, Soltis PS, Stevens PF, Anderberg AA, Moore MJ, Olmstead RG, Rudall PJ, Sytsma KJ, Tank DC, Wurdack K, Xiang JQY, Zmarzty S (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121CrossRefGoogle Scholar
  5. Cavalier-Smith T (2002) Chloroplast evolution: secondary symbiogenesis and multiple losses. Curr Biol 12:R62–R64. doi: 10.1016/S0960-9822(01)00675-3 CrossRefPubMedGoogle Scholar
  6. Chen J, Hao Z, Xu H, Yang L, Liu G, Sheng Y, Zheng C, Zheng W, Cheng T, Shi J (2015) The complete chloroplast genome sequence of the relict woody plant Metasequoia glyptostroboides Hu et Cheng. Front Plant Sci 6:447. doi: 10.3389/fpls.2015.00447 PubMedPubMedCentralGoogle Scholar
  7. Choi KS, Son O, Park S (2015) The Chloroplast Genome of Elaeagnus macrophylla and trnH Duplication Event in Elaeagnaceae. PLoS One 10(9):e0138727CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cronn R, Liston A, Parks M, Gernandt DS, Shen RK, Mockler T (2008) Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology. Nucleic Acids Res 36:e122. doi: 10.1093/nar/gkn502 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20:581–586. doi: 10.1038/nbt0602-581 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Daniell H, Carmona-Sanchez O, Burns BB (2004a) Chloroplastderived vaccine antibodies, biopharmaceuticals, and edible vaccines in transgenic plants engineered via the chloroplast genome. In: Schillberg S (ed) Molecular farming. Wiley, Germany, Chapter 8 pp 113–133Google Scholar
  11. DeCosa B, Moar W, Lee S-B, Miller M, Daniell H (2001) Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 9:71–74. doi: 10.1038/83559 Google Scholar
  12. do Nascimento Vieira L, dos Anjos KG, Faoro H, de Freitas Fraga HP, Greco TM, de Oliveira Pedrosa F, de Souza EM, Rogalski M, de Souza RF, Guerra MP (2015) Phylogenetic inference and SSR characterization of tropical woody bamboos tribe Bambuseae (Poaceae: Bambusoideae) based on complete plastid genome sequences. Curr Genet. doi: 10.1007/s00294-015-0549-z Google Scholar
  13. Ewing B, Hillier LD, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res 8:175–185CrossRefPubMedGoogle Scholar
  14. Ferrarini M, Moretto M, Ward JA, Šurbanovski N, Stevanović V, Giongo L, Viola R, Cavalieri D, Velasco R, Cestaro A, Sargent DJ (2013) An evaluation of the PacBio RS platform for sequencing and de novo assembly of a chloroplast genome. BMC Genom 14(1):670. doi: 10.1186/1471-2164-14-670 CrossRefGoogle Scholar
  15. Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I (2004) VISTA: computational tools for comparative genomics. Nucleic Acids Res 32:W273–W279CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gao QH, Wu CS, Wang M (2013) The jujube (Ziziphus jujuba Mill.) fruit: a review of current knowledge of fruit composition and health benefits. J Agric Food Chem 61:3351–3363CrossRefPubMedGoogle Scholar
  17. George B, Bhatt BS, Awasthi M, George B, Singh AK (2015) Comparative analysis of microsatellites in chloroplast genomes of lower and higher plants. Curr Genet 61(4):665–677. doi: 10.1007/s00294-015-0495-9 CrossRefPubMedGoogle Scholar
  18. Goulding SE, Olmstead RG, Morden CW, Wolfe KH (1996) Ebb and flow of the chloroplast inverted repeat. Mol Gen Genet 252:195–206CrossRefPubMedGoogle Scholar
  19. Gray MW (1989) The evolutionary origins of organelles. Trends Genet 5:294–299. doi: 10.1016/0168-9525(89)90111-X CrossRefPubMedGoogle Scholar
  20. Hagemann R (2004) The sexual inheritance of plant organelles. In: Daniell H, Chase CD (eds) Molecular biology and biotechnology of plant organelles. Springer-Verlag, Dordrecht, pp 93–114CrossRefGoogle Scholar
  21. Hernandez D, Francois P, Farinelli L, Osteras M, Schrenzel J (2008) De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer. Genome Res 18:802–809CrossRefPubMedPubMedCentralGoogle Scholar
  22. Howe CJ, Barbrook AC, Koumandou VL, Nisbet RE, Symington HA, Wightman TF (2003) Evolution of the chloroplast genome. Philos Trans R Soc Lond B Biol Sci 358:99–106. doi: 10.1098/rstb.2002.1176 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Huotari T, Korpelainen H (2012) Complete chloroplast genome sequence of Elodea canadensis and comparative analyses with other monocot plastid genomes. Gene 508:96–105CrossRefPubMedGoogle Scholar
  24. Jansen RK, Cai Z, Raubeson LA, Daniell H, Depamphilis CW, Leebens-Mack J, Müller KF, Guisinger-Bellian MG, Haberle RC, Hansen AK, Chumley TW, Lee SB, Peery R, Mcneal JR, Kuehl JV, Boore JL (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci USA 104:19369–19374CrossRefPubMedPubMedCentralGoogle Scholar
  25. Khan A, Khan IA, Heinze B, Azim MK (2012) The chloroplast genome sequence of date palm (Phoenix dactylifera L. cv. ‘Aseel’). Plant Molecular Biology Reporter 30(3):666–678. doi: 10.1007/s11105-011-0373-7 CrossRefGoogle Scholar
  26. Kong WQ (2016) Yang J H (2016) The complete chloroplast genome sequence of Morus mongolica and a comparative analysis within the Fabidae clade. Curr Genet 62:165–172. doi: 10.1007/s00294-015-0507-9 CrossRefPubMedGoogle Scholar
  27. Kuang D, Wu H, Wang Y, Gao L, Zhang S, Lu L (2011) Complete chloroplast genome sequence of Magnolia kwangsiensis (Magnoliaceae): implication for DNA barcoding and population genetics. Genome 54:663–673. doi: 10.1139/G11-026 CrossRefPubMedGoogle Scholar
  28. Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R (2001) REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 29:4633–4642. doi: 10.1093/nar/29.22.4633 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DJ (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefPubMedGoogle Scholar
  30. Lee HL, Jansen RK, Chumley TW, Kim KJ (2007) Gene relocations withinchloroplast genomes of Jasminum and Menodora (Oleaceae) are due to multiple, overlapping inversions. Mol Biol Evol 24:1161–1180. doi: 10.1093/molbev/msm036 CrossRefPubMedGoogle Scholar
  31. Lohse M, Drechsel O, Bock R (2007) OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr Genet 52:267–274. doi: 10.1007/s00294-007-0161-y CrossRefPubMedGoogle Scholar
  32. Ma XY, Xie CX, Liu C, Song JY, Yao H, Luo K, Zhu Y, Gao T, Pang X, Qian J, Chen S (2010) Species identification of medicinal pteridophytes by a DNA barcode marker, the chloroplast psbA-trnH intergenic region. Biol Pharm Bull 33:1919–1924. doi: 10.1248/bpb.33.1919 CrossRefPubMedGoogle Scholar
  33. Ma QY, Feng K, Yang WX, Chen YN, Yu FX, Yin TM (2014) Identification and characterization of nucleotide variations in the genome of Ziziphus jujuba (Rhamnaceae) by next generation sequencing. Mol Biol Rep 41(5):3219–3223. doi: 10.1007/s11033-014-3184-8 CrossRefPubMedGoogle Scholar
  34. Minoche AE, Dohm JC, Himmelbauer H (2011) Evaluation of genomic highthroughput sequencing data generated on Illumina HiSeq and Genome Analyzer systems. Genome Biol 12:R112CrossRefPubMedPubMedCentralGoogle Scholar
  35. Moore MJ, Bell CD, Soltis PS, Soltis DE (2007) Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc Natl Acad Sci USA 104:19363–19368CrossRefPubMedPubMedCentralGoogle Scholar
  36. Neuhaus HE, Emes MJ (2000) Nonphotosynthetic Metabolism in Plastids. Annu Rev Plant Physiol Plant Mol Biol 51:111–140. doi: 10.1146/annurev.arplant.51.1.111 CrossRefPubMedGoogle Scholar
  37. Nie X, Lv S, Zhang Y, Du X, Wang L, Biradar SS, Tan X, Wan F, Weining S (2012) Complete chloroplast genome sequence of a major invasive species, crofton weed (Ageratina adenophora). PLoS One 7:e36869. doi: 10.1371/journal.pone.0036869 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aoto S-I, Inokuchi H, Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322:572–574. doi: 10.1038/322572a0 CrossRefGoogle Scholar
  39. Oldenburg DJ, Bendich AJ (2015) The linear plastid chromosomes of maize: terminal sequences, structures, and implications for DNA replication. Curr Genet. doi: 10.1007/s00294-015-0548-0 PubMedGoogle Scholar
  40. Palmer JD (1991) Plastid chromosomes: structure and evolution. In: Vasil IK, Bogorad L (eds) Cell Culture and Somatic Cell Genetics in Plants, Vol 7A, The Molecular Biology of Plastids. Academic Press, San Diego, pp 5–53Google Scholar
  41. Palmer J, Jansen R, Michaels H, Chase M, Manhart J (1988) Chloroplast DNA variation and plant phylogeny. Ann Missouri Bot Gard 75:1180–1206. doi: 10.2307/2399279 CrossRefGoogle Scholar
  42. Qian J, Song J, Gao H, Zhu Y, Xu J, Pang X, Yao H, Sun C, Li X, Li C, Liu J, Xu H, Chen S (2013) The Complete Chloroplast Genome Sequence of the Medicinal Plant Salvia miltiorrhiza. PLoS One 8(2):e57607. doi: 10.1371/journal.pone.0057607 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Quinlan AR, Stewart DA, Stromberg MP, Marth GT (2008) Pyrobayes: an improved base caller for SNP discovery in pyrosequences. Nat Meth 5:179–181. doi: 10.1038/nmeth.1172 CrossRefGoogle Scholar
  44. Rasko DA, Webster DR, Sahl JW, Bashir A, Boisen N, Scheutz F, Paxinos EE, Sebra R, Chin C-S, Lliopoulos D, Klammer A, Peluso P, Lee L, Kislyuk AO, Bullard J, Kasarskis A, Wang S, Eid J, Rank D, Redman JC, Steyert SR, Frimodt-Møller J, Struve C, Petersen AM, Krogfelt KA, Nataro JP, Schadt EE, Waldor MK (2011) Origins of the E. coli strain causing an outbreak of hemolytic–uremic syndrome in Germany. N Engl J Med 365(8):709–717CrossRefPubMedPubMedCentralGoogle Scholar
  45. Raubeson LA, Jansen RK (2005) Chloroplast genomes of plants. In: Henry R (ed) Diversity and evolution of plants-genotypic and phenotypic variation in higher plants. CABI Publishing, Wallingford, pp 45–68CrossRefGoogle Scholar
  46. Raubeson LA, Peery R, Chumley TW, Dziubek C, Fourcade HM, Boore JL, Jansen RK (2007) Comparative chloroplast genomics: analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus. BMC Genom 8:174CrossRefGoogle Scholar
  47. Ruiz ON, Daniell H (2005) Engineering. Cytoplasmic male sterility via the chloroplast genome. Plant Phys 138:1232–1246CrossRefGoogle Scholar
  48. Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33:W686–W689. doi: 10.1093/nar/gki366 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Sears BB (1980) Elimination of plastids during spermatogenesis and fertilization in the plant kingdom. Plasmid 4:233–255CrossRefPubMedGoogle Scholar
  50. Shanker A (2013) Identification of microsatellites in chloroplast genome of Anthoceros formosae. Arch Bryol 191:1–6Google Scholar
  51. Small RL, Ryburn JA, Cronn RC, Seelanan T, Wendel JF (1998) The tortoise and the hare: choosing between non coding plastome and nuclear ADH sequences for phylogeny reconstruction in a recently diverged plant group. Am J Bot 85:1301–1315CrossRefPubMedGoogle Scholar
  52. Sommer DD, Delcher AL, Salzberg SL, Pop M (2007) Minimus: a fast, lightweight genome assembler. BMC Bioinformatics 8:64CrossRefPubMedPubMedCentralGoogle Scholar
  53. Sonah H, Deshmukh RK, Sharma A, Singh VP, Gupta DK (2011) Genome-wide distribution and organization of microsatellites in plants: an insight into marker development in Brachypodium. PLoS One 6(6):e21298. doi: 10.1371/journal.pone.0021298 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Steane DA (2005) Complete nucleotide sequence of the chloroplast genome from the Tasmanian blue gum, Eucalyptus globulus (Myrtaceae). DNA Res 12(3):215–220CrossRefPubMedGoogle Scholar
  55. Sugiura M (1992) The chloroplast genome. Plant Mol. Biol. pp 149–168Google Scholar
  56. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version. Mol Biol Evol 30:2725–2729. doi: 10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Treangen TJ, Sommer DD, Angly FE, Koren S, Pop M (2011) Next generation sequence assembly with AMOS. Curr. Protoc. Bioinformatics 33: 11.8.1–11.8.18Google Scholar
  58. Wang RJ, Cheng CL, Chang CC, Wu CL, Su TM, Chaw SM (2008) Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots. BMC Evol Biol 8:36CrossRefPubMedPubMedCentralGoogle Scholar
  59. Wicke S, Schneeweiss GM, dePamphilis CW, Muller KF, Quandt D (2011) The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol 76:273–297. doi: 10.1007/s11103-011-9762-4 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Wicke S, Müller KF, de Pamphilis CW, Quandt D, Wuckett NJ, Zhang Y, Schneeweiss Renner SSGM (2013) Mechanisms of functional and physical genome reduction in photosynthetic and nonphotosynthetuc parasitic plants of the broomrape family. Plant Cell 25:3711–3725CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9905CrossRefPubMedPubMedCentralGoogle Scholar
  62. Wolfe KH, Gouy ML, Yang YW, Sharp PM, Li WH (1989) Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc Natl Acad Sci USA 86:6201–6205CrossRefPubMedPubMedCentralGoogle Scholar
  63. Wolfe KH, Morden CW, Ems SC, Palmer JD (1992) Rapid evolution of the plastid translational apparatus in a nonphotosynthetic plant: loss or accelerated sequence evolution of tRNA and ribosomal protein genes. J Mol Evol 35:304–317CrossRefPubMedGoogle Scholar
  64. Wu FH, Chan MT, Liao DC, Hsu CT, Lee YW, Daniell H, Lin Duvall MRCS (2010) Complete chloroplast genome of Oncidium Gower Ramsey and evaluation of molecular markers for identification and breeding in Oncidiinae. BMC Plant Biol 10:68. doi: 10.1186/1471-2229-10-68 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255. doi: 10.1093/bioinformatics/bth352 CrossRefPubMedGoogle Scholar
  66. Yan YH, Gao ZP (2002) Industrialization of Chinese jujube. J Northwest Sci Technol Univ Agric For 30:95–98 (in Chinese) Google Scholar
  67. Yang M, Zhang X, Liu G, Yin Y, Chen K, Yun Q, Zhao D, Al-Mssallem IS, Yu J (2010) The complete chloroplast genome sequence of date palm (Phoenix dactylifera L.). PLoS One 5:e12762. doi: 10.1371/journal.pone.0012762 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Yao H, Song JY, Ma XY, Liu C, Li Y, Xu HX, Han JP, Duan LS, Chen SL (2009) Identification of Dendrobium species by a candidate DNA barcode sequence: the chloroplast psbA-trnH intergenic region. Planta Med 75:667–669. doi: 10.1055/s-0029-1185385 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Qiuyue Ma
    • 1
  • Shuxian Li
    • 1
  • Changwei Bi
    • 2
  • Zhaodong Hao
    • 1
  • Congrui Sun
    • 1
  • Ning Ye
    • 2
  1. 1.The Southern Modern Forestry Collaborative Innovation CenterNanjing Forestry UniversityNanjingChina
  2. 2.The College of Information Science and TechnologyNanjing Forestry UniversityNanjingChina

Personalised recommendations