Advertisement

Current Genetics

, Volume 62, Issue 4, pp 725–730 | Cite as

Timeless protection of telomeres

  • Mariana C. Gadaleta
  • Alberto González-Medina
  • Eishi Noguchi
Review

Abstract

The DNA replication machinery encounters problems at numerous genomic regions that are inherently difficult to replicate. These genomic regions include telomeres, which contain repetitive DNA and telomere-binding proteins. If not properly regulated, replication of such genomic regions can result in DNA damage, leading to genomic instability. Studies implicated a role of Timeless-related proteins at difficult-to-replicate genomic regions, including telomeres. However, how these proteins maintain telomeres was elusive. In a recent report, we described the role of Swi1, a Timeless-related protein, in telomere maintenance in fission yeast. We demonstrated that Swi1 is required for proper replication of repeat DNA sequences at telomeres. We also showed that Swi1-deficient cells utilize recombination-based ALT (alternative lengthening of telomeres)-like mechanisms to maintain telomeres in the absence of telomerase. Here, we highlight these findings and present additional data to discuss the role of Swi1Timeless in telomere protection and ALT prevention.

Keywords

Swi1 Timeless FPC Fork protection complex Telomeres Myb/SANT Tbf1 ALT Alternative lengthening of telomeres Replication fork Genomic integrity Repeat DNA Cancer 

Notes

Acknowledgments

This work was supported by the Aging Initiative at Drexel University College of Medicine. We thank Chiaki Noguchi and Grant Grothusen for technical assistance and National BioResource Project Japan for S. pombe strains.

References

  1. Cherng N, Shishkin AA, Schlager LI, Tuck RH, Sloan L, Matera R, Sarkar PS, Ashizawa T, Freudenreich CH, Mirkin SM (2011) Expansions, contractions, and fragility of the spinocerebellar ataxia type 10 pentanucleotide repeat in yeast. Proc Natl Acad Sci USA 108:2843–2848. doi: 10.1073/pnas.1009409108 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Cockell MM, Lo Presti L, Cerutti L, Cano Del Rosario E, Hauser PM, Simanis V (2009) Functional differentiation of tbf1 orthologues in fission and budding yeasts. Eukaryot Cell 8:207–216. doi: 10.1128/EC.00174-08 CrossRefPubMedGoogle Scholar
  3. Cooper JP, Nimmo ER, Allshire RC, Cech TR (1997) Regulation of telomere length and function by a Myb-domain protein in fission yeast. Nature 385:744–747. doi: 10.1038/385744a0 CrossRefPubMedGoogle Scholar
  4. Dalgaard JZ, Klar AJ (2000) swi1 and swi3 perform imprinting, pausing, and termination of DNA replication in S. pombe. Cell 102:745–751CrossRefPubMedGoogle Scholar
  5. Dalgaard JZ, Klar AJ (2001) A DNA replication-arrest site RTS1 regulates imprinting by determining the direction of replication at mat1 in S. pombe. Genes Dev 15:2060–2068. doi: 10.1101/gad.200801 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Dilley RL, Greenberg RA (2015) Alternative telomere maintenance and cancer. Trends Cancer 1:145–156. doi: 10.1016/j.trecan.2015.07.007 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Eydmann T, Sommariva E, Inagawa T, Mian S, Klar AJ, Dalgaard JZ (2008) Rtf1-mediated eukaryotic site-specific replication termination. Genetics 180:27–39. doi: 10.1534/genetics.108.089243 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Flynn RL, Cox KE, Jeitany M, Wakimoto H, Bryll AR, Ganem NJ, Bersani F, Pineda JR, Suva ML, Benes CH, Haber DA, Boussin FD, Zou L (2015) Alternative lengthening of telomeres renders cancer cells hypersensitive to ATR inhibitors. Science 347:273–277. doi: 10.1126/science.1257216 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fujita I, Tanaka M, Kanoh J (2012) Identification of the functional domains of the telomere protein Rap1 in Schizosaccharomyces pombe. PLoS One 7:e49151. doi: 10.1371/journal.pone.0049151 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Fukunaga K, Hirano Y, Sugimoto K (2012) Subtelomere-binding protein Tbf1 and telomere-binding protein Rap1 collaborate to inhibit localization of the Mre11 complex to DNA ends in budding yeast. Mol Biol Cell 23:347–359. doi: 10.1091/mbc.E11-06-0568 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Gadaleta MC, Das MM, Tanizawa H, Chang YT, Noma K, Nakamura TM, Noguchi E (2016) Swi1Timeless prevents repeat instability at fission yeast telomeres. PLoS Genet 12:e1005943. doi: 10.1371/journal.pgen.1005943 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hustedt N, Gasser SM, Shimada K (2013) Replication checkpoint: tuning and coordination of replication forks in s phase. Genes (Basel) 4:388–434. doi: 10.3390/genes4030388 Google Scholar
  13. Ivessa AS, Zhou JQ, Schulz VP, Monson EK, Zakian VA (2002) Saccharomyces Rrm3p, a 5′ to 3′ DNA helicase that promotes replication fork progression through telomeric and subtelomeric DNA. Genes Dev 16:1383–1396. doi: 10.1101/gad.982902 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Krings G, Bastia D (2004) swi1- and swi3-dependent and independent replication fork arrest at the ribosomal DNA of Schizosaccharomyces pombe. Proc Natl Acad Sci USA 101:14085–14090. doi: 10.1073/pnas.0406037101 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Leman AR, Noguchi E (2012) Local and global functions of Timeless and Tipin in replication fork protection. Cell Cycle 11:3945–3955. doi: 10.4161/cc.21989 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Leman AR, Noguchi E (2013) The replication fork: understanding the eukaryotic replication machinery and the challenges to genome duplication. Genes (Basel) 4:1–32. doi: 10.3390/genes4010001 Google Scholar
  17. Leman AR, Dheekollu J, Deng Z, Lee SW, Das MM, Lieberman PM, Noguchi E (2012) Timeless preserves telomere length by promoting efficient DNA replication through human telomeres. Cell Cycle 11:2337–2347. doi: 10.4161/cc.20810 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Liu G, Chen X, Gao Y, Lewis T, Barthelemy J, Leffak M (2012) Altered replication in human cells promotes DMPK (CTG)(n). (CAG)(n) repeat instability. Mol Cell Biol 32:1618–1632. doi: 10.1128/MCB.06727-11 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Makovets S, Herskowitz I, Blackburn EH (2004) Anatomy and dynamics of DNA replication fork movement in yeast telomeric regions. Mol Cell Biol 24:4019–4031CrossRefPubMedPubMedCentralGoogle Scholar
  20. Millet C, Makovets S (2016) Aneuploidy as a mechanism of adaptation to telomerase insufficiency. Curr Genet. doi: 10.1007/s00294-015-0559-x PubMedPubMedCentralGoogle Scholar
  21. Mirkin EV, Mirkin SM (2007) Replication fork stalling at natural impediments. Microbiol Mol Biol Rev 71:13–35. doi: 10.1128/MMBR.00030-06 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Moser BA, Nakamura TM (2009) Protection and replication of telomeres in fission yeast. Biochem Cell Biol 87:747–758. doi: 10.1139/O09-037 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Moser BA, Subramanian L, Chang YT, Noguchi C, Noguchi E, Nakamura TM (2009a) Differential arrival of leading and lagging strand DNA polymerases at fission yeast telomeres. EMBO J 28:810–820. doi: 10.1038/emboj.2009.31 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Moser BA, Subramanian L, Khair L, Chang YT, Nakamura TM (2009b) Fission yeast Tel1(ATM) and Rad3(ATR) promote telomere protection and telomerase recruitment. PLoS Genet 5:e1000622. doi: 10.1371/journal.pgen.1000622 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Noguchi E, Noguchi C, Du LL, Russell P (2003) Swi1 prevents replication fork collapse and controls checkpoint kinase Cds1. Mol Cell Biol 23:7861–7874CrossRefPubMedPubMedCentralGoogle Scholar
  26. Noguchi E, Noguchi C, McDonald WH, Yates JR 3rd, Russell P (2004) Swi1 and Swi3 are components of a replication fork protection complex in fission yeast. Mol Cell Biol 24:8342–8355. doi: 10.1128/MCB.24.19.8342-8355.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ohki R, Ishikawa F (2004) Telomere-bound TRF1 and TRF2 stall the replication fork at telomeric repeats. Nucleic Acids Res 32:1627–1637. doi: 10.1093/nar/gkh309 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Pitt CW, Valente LP, Rhodes D, Simonsson T (2008) Identification and characterization of an essential telomeric repeat binding factor in fission yeast. J Biol Chem 283:2693–2701. doi: 10.1074/jbc.M708784200 CrossRefPubMedGoogle Scholar
  29. Pryce DW, Ramayah S, Jaendling A, McFarlane RJ (2009) Recombination at DNA replication fork barriers is not universal and is differentially regulated by Swi1. Proc Natl Acad Sci USA 106:4770–4775. doi: 10.1073/pnas.0807739106 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Rapp JB, Noguchi C, Das MM, Wong LK, Ansbach AB, Holmes AM, Arcangioli B, Noguchi E (2010) Checkpoint-dependent and -independent roles of Swi3 in replication fork recovery and sister chromatid cohesion in fission yeast. PLoS One 5:e13379. doi: 10.1371/journal.pone.0013379 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Razidlo DF, Lahue RS (2008) Mrc1, Tof1 and Csm3 inhibit CAG.CTG repeat instability by at least two mechanisms. DNA Repair (Amst) 7:633–640. doi: 10.1016/j.dnarep.2008.01.009 CrossRefGoogle Scholar
  32. Rozenzhak S, Mejia-Ramirez E, Williams JS, Schaffer L, Hammond JA, Head SR, Russell P (2010) Rad3 decorates critical chromosomal domains with gammaH2A to protect genome integrity during S-Phase in fission yeast. PLoS Genet 6:e1001032. doi: 10.1371/journal.pgen.1001032 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Sabouri N, McDonald KR, Webb CJ, Cristea IM, Zakian VA (2012) DNA replication through hard-to-replicate sites, including both highly transcribed RNA Pol II and Pol III genes, requires the S. pombe Pfh1 helicase. Genes Dev 26:581–593. doi: 10.1101/gad.184697.111 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Sarda S, Hannenhalli S (2015) High-throughput identification of cis-regulatory rewiring events in yeast. Mol Biol Evol 32:3047–3063. doi: 10.1093/molbev/msv203 PubMedGoogle Scholar
  35. Shishkin AA, Voineagu I, Matera R, Cherng N, Chernet BT, Krasilnikova MM, Narayanan V, Lobachev KS, Mirkin SM (2009) Large-scale expansions of Friedreich’s ataxia GAA repeats in yeast. Mol Cell 35:82–92. doi: 10.1016/j.molcel.2009.06.017 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Sommariva E, Pellny TK, Karahan N, Kumar S, Huberman JA, Dalgaard JZ (2005) Schizosaccharomyces pombe Swi1, Swi3, and Hsk1 are components of a novel S-phase response pathway to alkylation damage. Mol Cell Biol 25:2770–2784. doi: 10.1128/MCB.25.7.2770-2784.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Urtishak KA, Smith KD, Chanoux RA, Greenberg RA, Johnson FB, Brown EJ (2009) Timeless maintains genomic stability and suppresses sister chromatid exchange during unperturbed DNA replication. J Biol Chem 284:8768–8776. doi: 10.1074/jbc.M806103200 CrossRefGoogle Scholar
  38. Verdun RE, Karlseder J (2006) The DNA damage machinery and homologous recombination pathway act consecutively to protect human telomeres. Cell 127:709–720. doi: 10.1016/j.cell.2006.09.034 CrossRefPubMedGoogle Scholar
  39. Voineagu I, Narayanan V, Lobachev KS, Mirkin SM (2008) Replication stalling at unstable inverted repeats: interplay between DNA hairpins and fork stabilizing proteins. Proc Natl Acad Sci USA 105:9936–9941. doi: 10.1073/pnas.0804510105 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Yan C, Zhang D, Raygoza Garay JA, Mwangi MM, Bai L (2015) Decoupling of divergent gene regulation by sequence-specific DNA binding factors. Nucleic Acids Res 43:7292–7305. doi: 10.1093/nar/gkv618 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mariana C. Gadaleta
    • 1
    • 2
  • Alberto González-Medina
    • 1
    • 3
  • Eishi Noguchi
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyDrexel University College of MedicinePhiladelphiaUSA
  2. 2.The Scripps Research InstituteLa JollaUSA
  3. 3.Universitat Pompeu FabraBarcelonaSpain

Personalised recommendations