Skip to main content

Protein aggregation as a mechanism of adaptive cellular responses

Abstract

Coalescence of proteins into different types of intracellular bodies has surfaced as a widespread adaptive mechanism to re-organize cells and cellular functions in response to specific cues. These structures, composed of proteins or protein-mRNA-complexes, regulate cellular processes through modulating enzymatic activities, gene expression or shielding macromolecules from damage. Accordingly, such bodies are associated with a wide-range of processes, including meiosis, memory-encoding, host-pathogen interactions, cancer, stress responses, as well as protein quality control, DNA replication stress and aneuploidy. Importantly, these distinct coalescence responses are controlled, and in many cases regulated by chaperone proteins. While cells can tolerate and proficiently coordinate numerous distinct types of protein bodies, some of them are also intimately linked to diseases or the adverse effects of aging. Several protein bodies that differ in composition, packing, dynamics, size, and localization were originally discovered in budding yeast. Here, we provide a concise and comparative review of their nature and nomenclature.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Aguilaniu H, Gustafsson L, Rigoulet M, Nystrom T (2003) Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 299:1751–1753. doi:10.1126/science.1080418

    CAS  PubMed  Article  Google Scholar 

  2. Alberti S, Halfmann R, King O, Kapila A, Lindquist S (2009) A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137:146–158. doi:10.1016/j.cell.2009.02.044

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Allen C, Buttner S, Aragon AD, Thomas JA, Meirelles O, Jaetao JE, Benn D, Ruby SW, Veenhuis M, Madeo F, Werner-Washburne M (2006) Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures. J Cell Biol 174:89–100. doi:10.1083/jcb.200604072

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Andersson V, Hanzen S, Liu B, Molin M, Nystrom T (2013) Enhancing protein disaggregation restores proteasome activity in aged cells. Aging 5:802–812

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Berchowitz LE, Kabachinski G, Walker MR, Carlile TM, Gilbert WV, Schwartz TU, Amon A (2015) Regulated formation of an amyloid-like translational repressor governs gametogenesis. Cell 163:406–418. doi:10.1016/j.cell.2015.08.060

    CAS  PubMed  Article  Google Scholar 

  6. Breker M, Gymrek M, Moldavski O, Schuldiner M (2014) LoQAtE–Localization and Quantitation ATlas of the yeast proteomE: a new tool for multiparametric dissection of single-protein behavior in response to biological perturbations in yeast. Nucl Acid Res 42:D726–D730. doi:10.1093/nar/gkt933

    CAS  Article  Google Scholar 

  7. Buchan JR, Muhlrad D, Parker R (2008) P bodies promote stress granule assembly in Saccharomyces cerevisiae. J Cell Biol 183:441–455. doi:10.1083/jcb.200807043

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. Buchan JR, Yoon JH, Parker R (2011) Stress-specific composition, assembly and kinetics of stress granules in Saccharomyces cerevisiae. J Cell Sci 124:228–239. doi:10.1242/jcs.078444

    CAS  PubMed  Article  Google Scholar 

  9. Carroll JS, Munchel SE, Weis K (2011) The DExD/H box ATPase Dhh1 functions in translational repression, mRNA decay, and processing body dynamics. J Cell Biol 194:527–537. doi:10.1083/jcb.201007151

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Castello A, Fischer B, Eichelbaum K, Horos R, Beckmann BM, Strein C, Davey NE, Humphreys DT, Preiss T, Steinmetz LM, Krijgsveld J, Hentze MW (2012) Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149:1393–1406. doi:10.1016/j.cell.2012.04.031

    CAS  PubMed  Article  Google Scholar 

  11. Caudron F, Barral Y (2013) A super-assembly of Whi3 encodes memory of deceptive encounters by single cells during yeast courtship. Cell 155:1244–1257. doi:10.1016/j.cell.2013.10.046

    CAS  PubMed  Article  Google Scholar 

  12. Cherkasov V, Hofmann S, Druffel-Augustin S, Mogk A, Tyedmers J, Stoecklin G, Bukau B (2013) Coordination of translational control and protein homeostasis during severe heat stress. Curr Biol CB 23:2452–2462. doi:10.1016/j.cub.2013.09.058

    CAS  PubMed  Article  Google Scholar 

  13. Clay L, Caudron F, Denoth-Lippuner A, Boettcher B, Buvelot Frei S, Snapp EL, Barral Y (2014) A sphingolipid-dependent diffusion barrier confines ER stress to the yeast mother cell. eLife 3:e01883. doi:10.7554/eLife.01883

    PubMed  PubMed Central  Article  Google Scholar 

  14. Coelho M, Lade SJ, Alberti S, Gross T, Tolic IM (2014) Fusion of protein aggregates facilitates asymmetric damage segregation. PLoS Biol 12:e1001886. doi:10.1371/journal.pbio.1001886

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  15. De Virgilio C (2012) The essence of yeast quiescence. FEMS Microbiol Rev 36:306–339. doi:10.1111/j.1574-6976.2011.00287.x

    PubMed  Article  CAS  Google Scholar 

  16. Decker CJ, Parker R (2012) P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harb Perspect Biol 4:a012286. doi:10.1101/cshperspect.a012286

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. Decker CJ, Teixeira D, Parker R (2007) Edc3p and a glutamine/asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae. J Cell Biol 179:437–449. doi:10.1083/jcb.200704147

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Denoth Lippuner A, Julou T, Barral Y (2014) Budding yeast as a model organism to study the effects of age. FEMS Microbiol Rev 38:300–325. doi:10.1111/1574-6976.12060

    CAS  PubMed  Article  Google Scholar 

  19. Denoth-Lippuner A, Krzyzanowski MK, Stober C, Barral Y (2014) Role of SAGA in the asymmetric segregation of DNA circles during yeast ageing. eLife 3:e03790. doi:10.7554/eLife.03790

    PubMed Central  Article  Google Scholar 

  20. Doronina VA, Staniforth GL, Speldewinde SH, Tuite MF, Grant CM (2015) Oxidative stress conditions increase the frequency of de novo formation of the yeast [PSI+] prion. Mol Microbiol 96:163–174. doi:10.1111/mmi.12930

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Duennwald ML (2013) Yeast as a platform to explore polyglutamine toxicity and aggregation. Methods Mol Biol 1017:153–161. doi:10.1007/978-1-62703-438-8_11

    CAS  PubMed  Article  Google Scholar 

  22. Duennwald ML, Echeverria A, Shorter J (2012) Small heat shock proteins potentiate amyloid dissolution by protein disaggregases from yeast and humans. PLoS Biol 10:e1001346. doi:10.1371/journal.pbio.1001346

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Elden AC, Kim HJ, Hart MP, Chen-Plotkin AS, Johnson BS, Fang X, Armakola M, Geser F, Greene R, Lu MM, Padmanabhan A, Clay-Falcone D, McCluskey L, Elman L, Juhr D, Gruber PJ, Rub U, Auburger G, Trojanowski JQ, Lee VM, Van Deerlin VM, Bonini NM, Gitler AD (2010) Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466:1069–1075. doi:10.1038/nature09320

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Erjavec N, Larsson L, Grantham J, Nystrom T (2007) Accelerated aging and failure to segregate damaged proteins in Sir2 mutants can be suppressed by overproducing the protein aggregation-remodeling factor Hsp104p. Genes Dev 21:2410–2421. doi:10.1101/gad.439307

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Escusa-Toret S, Vonk WI, Frydman J (2013) Spatial sequestration of misfolded proteins by a dynamic chaperone pathway enhances cellular fitness during stress. Nat Cell Biol 15:1231–1243. doi:10.1038/ncb2838

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Fang NN, Ng AH, Measday V, Mayor T (2011) Hul5 HECT ubiquitin ligase plays a major role in the ubiquitylation and turnover of cytosolic misfolded proteins. Nat Cell Biol 13:1344–1352. doi:10.1038/ncb2343

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Fang NN, Chan GT, Zhu M, Comyn SA, Persaud A, Deshaies RJ, Rotin D, Gsponer J, Mayor T (2014) Rsp5/Nedd4 is the main ubiquitin ligase that targets cytosolic misfolded proteins following heat stress. Nat Cell Biol 16:1227–1237. doi:10.1038/ncb3054

    CAS  PubMed  Article  Google Scholar 

  28. Fioriti L, Myers C, Huang YY, Li X, Stephan JS, Trifilieff P, Colnaghi L, Kosmidis S, Drisaldi B, Pavlopoulos E, Kandel ER (2015) The persistence of hippocampal-based memory requires protein synthesis mediated by the prion-like protein CPEB3. Neuron 86:1433–1448. doi:10.1016/j.neuron.2015.05.021

    CAS  PubMed  Article  Google Scholar 

  29. Garcia DM, Jarosz DF (2014) Rebels with a cause: molecular features and physiological consequences of yeast prions. FEMS Yeast Res 14:136–147

    CAS  PubMed  Article  Google Scholar 

  30. Herrmann L, Wiegmann C, Arsalan-Werner A, Hilbrich I, Jager C, Flach K, Suttkus A, Lachmann I, Arendt T, Holzer M (2015) Hook proteins: association with Alzheimer pathology and regulatory role of hook3 in amyloid beta generation. PLoS One 10:e0119423. doi:10.1371/journal.pone.0119423

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  31. Hill SM, Hao X, Liu B, Nystrom T (2014) Life-span extension by a metacaspase in the yeast Saccharomyces cerevisiae. Science 344:1389–1392. doi:10.1126/science.1252634

    CAS  PubMed  Article  Google Scholar 

  32. Ho YH, Gash AP (2015) Exploiting the yeast stress-activated signaling network to inform on stress biology and disease signaling. Curr Genet 61:503–511

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Holmes WM, Klaips CL, Serio TR (2014) Defining the limits: protein aggregation and toxicity in vivo. Crit Rev Biochem Mol Biol 49:294–303. doi:10.3109/10409238.2014.914151

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Hoyle NP, Castelli LM, Campbell SG, Holmes LE, Ashe MP (2007) Stress-dependent relocalization of translationally primed mRNPs to cytoplasmic granules that are kinetically and spatially distinct from P-bodies. J Cell Biol 179:65–74. doi:10.1083/jcb.200707010

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Jain S, Wheeler JR, Walters RW, Agrawal A, Barsic A, Parker R (2016) ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164:487–498. doi:10.1016/j.cell.2015.12.038

    CAS  PubMed  Article  Google Scholar 

  36. Janssens GE, Meinema AC, Gonzalez J, Wolters JC, Schmidt A, Guryev V, Bischoff R, Wit EC, Veenhoff LM, Heinemann M (2015) Protein biogenesis machinery is a driver of replicative aging in yeast. eLife 4:e08527. doi:10.7554/eLife.08527

    PubMed  PubMed Central  Article  Google Scholar 

  37. Kaganovich D, Kopito R, Frydman J (2008) Misfolded proteins partition between two distinct quality control compartments. Nature 454:1088–1095. doi:10.1038/nature07195

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Kayatekin C, Matlack KE, Hesse WR, Guan Y, Chakrabortee S, Russ J, Wanker EE, Shah JV, Lindquist S (2014) Prion-like proteins sequester and suppress the toxicity of huntingtin exon 1. Proc Natl Acad Sci USA 111:12085–12090. doi:10.1073/pnas.1412504111

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Khurana V, Tardiff DF, Chung CY, Lindquist S (2015) Toward stem cell-based phenotypic screens for neurodegenerative diseases. Nat Rev Neurol 11:339–350. doi:10.1038/nrneurol.2015.79

    CAS  PubMed  Article  Google Scholar 

  40. Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J, Diaz Z, MacLea KS, Freibaum B, Li S, Molliex A, Kanagaraj AP, Carter R, Boylan KB, Wojtas AM, Rademakers R, Pinkus JL, Greenberg SA, Trojanowski JQ, Traynor BJ, Smith BN, Topp S, Gkazi AS, Miller J, Shaw CE, Kottlors M, Kirschner J, Pestronk A, Li YR, Ford AF, Gitler AD, Benatar M, King OD, Kimonis VE, Ross ED, Weihl CC, Shorter J, Taylor JP (2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495:467–473. doi:10.1038/nature11922

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. King OD, Gitler AD, Shorter J (2012) The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res 1462:61–80. doi:10.1016/j.brainres.2012.01.016

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Kroschwald S, Maharana S, Mateju D, Malinovska L, Nuske E, Poser I, Richter D, Alberti S (2015) Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules. eLife 4:e06807. doi:10.7554/eLife.06807

    PubMed  PubMed Central  Article  Google Scholar 

  43. Laporte D, Salin B, Daignan-Fornier B, Sagot I (2008) Reversible cytoplasmic localization of the proteasome in quiescent yeast cells. J Cell Biol 181:737–745. doi:10.1083/jcb.200711154

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Li P, Banjade S, Cheng HC, Kim S, Chen B, Guo L, Llaguno M, Hollingsworth JV, King DS, Banani SF, Russo PS, Jiang QX, Nixon BT, Rosen MK (2012) Phase transitions in the assembly of multivalent signalling proteins. Nature 483:336–340. doi:10.1038/nature10879

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Li YR, King OD, Shorter J, Gitler AD (2013) Stress granules as crucibles of ALS pathogenesis. J Cell Biol 201:361–372. doi:10.1083/jcb.201302044

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Liebman SW, Chernoff YO (2012) Prions in yeast. Genetics 191:1041–1072. doi:10.1534/genetics.111.137760

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Liu B, Larsson L, Caballero A, Hao X, Oling D, Grantham J, Nystrom T (2010) The polarisome is required for segregation and retrograde transport of protein aggregates. Cell 140:257–267. doi:10.1016/j.cell.2009.12.031

    CAS  PubMed  Article  Google Scholar 

  48. Liu IC, Chiu SW, Lee HY, Leu JY (2012) The histone deacetylase Hos2 forms an Hsp42-dependent cytoplasmic granule in quiescent yeast cells. Mol Biol Cell 23:1231–1242. doi:10.1091/mbc.E11-09-0752

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Longo VD, Shadel GS, Kaeberlein M, Kennedy B (2012) Replicative and chronological aging in Saccharomyces cerevisiae. Cell Metab 16:18–31. doi:10.1016/j.cmet.2012.06.002

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Majumdar A, Cesario WC, White-Grindley E, Jiang H, Ren F, Khan MR, Li L, Choi EM, Kannan K, Guo F, Unruh J, Slaughter B, Si K (2012) Critical role of amyloid-like oligomers of Drosophila Orb2 in the persistence of memory. Cell 148:515–529. doi:10.1016/j.cell.2012.01.004

    CAS  PubMed  Article  Google Scholar 

  51. Malinovska L, Kroschwald S, Munder MC, Richter D, Alberti S (2012) Molecular chaperones and stress-inducible protein-sorting factors coordinate the spatiotemporal distribution of protein aggregates. Mol Biol Cell 23:3041–3056. doi:10.1091/mbc.E12-03-0194

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Malinovska L, Kroschwald S, Alberti S (2013) Protein disorder, prion propensities, and self-organizing macromolecular collectives. Biochim Biophys Acta 1834:918–931. doi:10.1016/j.bbapap.2013.01.003

    CAS  PubMed  Article  Google Scholar 

  53. Miller SB, Ho CT, Winkler J, Khokhrina M, Neuner A, Mohamed MY, Guilbride DL, Richter K, Lisby M, Schiebel E, Mogk A, Bukau B (2015) Compartment-specific aggregases direct distinct nuclear and cytoplasmic aggregate deposition. EMBO J 34:778–797. doi:10.15252/embj.201489524

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Moldavski O, Amen T, Levin-Zaidman S, Eisenstein M, Rogachev I, Brandis A, Kaganovich D, Schuldiner M (2015) Lipid droplets are essential for efficient clearance of cytosolic inclusion bodies. Dev Cell 33:603–610. doi:10.1016/j.devcel.2015.04.015

    CAS  PubMed  Article  Google Scholar 

  55. Narayanaswamy R, Levy M, Tsechansky M, Stovall GM, O’Connell JD, Mirrielees J, Ellington AD, Marcotte EM (2009) Widespread reorganization of metabolic enzymes into reversible assemblies upon nutrient starvation. Proc Natl Acad Sci USA 106:10147–10152. doi:10.1073/pnas.0812771106

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. Newby GA, Lindquist S (2013) Blessings in disguise: biological benefits of prion-like mechanisms. Trends Cell Biol 23:251–259. doi:10.1016/j.tcb.2013.01.007

    CAS  PubMed  Article  Google Scholar 

  57. Noree C, Sato BK, Broyer RM, Wilhelm JE (2010) Identification of novel filament-forming proteins in Saccharomyces cerevisiae and Drosophila melanogaster. J Cell Biol 190:541–551. doi:10.1083/jcb.201003001

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Nostramo R, Herman PK (2016) Deubiquitination and the regulation of stress granule assembly. Curr Genet. doi:10.1007/s00294-016-0571-9

  59. Nostramo R, Varia SN, Zhang B, Emerson MM, Herman PK (2015) The catalytic activity of the Ubp3 deubiquitinating protease is required for efficient stress granule assembly in Saccharomyces cerevisiae. Mol Cell Biol 36:173–183

    PubMed  PubMed Central  Google Scholar 

  60. Oling D, Eisele F, Kvint K, Nystrom T (2014) Opposing roles of Ubp3-dependent deubiquitination regulate replicative life span and heat resistance. EMBO J 33:747–761. doi:10.1002/embj.201386822

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  61. Orij R, Postmus J, Ter Beek A, Brul S, Smits GJ (2009) In vivo measurement of cytosolic and mitochondrial pH using a pH-sensitive GFP derivative in Saccharomyces cerevisiae reveals a relation between intracellular pH and growth. Microbiology 155:268–278. doi:10.1099/mic.0.022038-0

    CAS  PubMed  Article  Google Scholar 

  62. Oromendia AB, Dodgson SE, Amon A (2012) Aneuploidy causes proteotoxic stress in yeast. Genes Dev 26:2696–2708. doi:10.1101/gad.207407.112

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. Park SH, Kukushkin Y, Gupta R, Chen T, Konagai A, Hipp MS, Hayer-Hartl M, Hartl FU (2013) PolyQ proteins interfere with nuclear degradation of cytosolic proteins by sequestering the Sis1p chaperone. Cell 154:134–145. doi:10.1016/j.cell.2013.06.003

    CAS  PubMed  Article  Google Scholar 

  64. Parsell DA, Kowal AS, Singer MA, Lindquist S (1994) Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372:475–478. doi:10.1038/372475a0

    CAS  PubMed  Article  Google Scholar 

  65. Peters LZ, Hazan R, Breker M, Schuldiner M, Ben-Aroya S (2013) Formation and dissociation of proteasome storage granules are regulated by cytosolic pH. J Cell Biol 201:663–671. doi:10.1083/jcb.201211146

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. Peters LZ, Karmon O, Miodownik S, Ben-Aroya S (2016) Proteasome storage granules are transiently associated with the insoluble protein deposit (IPOD). J cell sci. doi:10.1242/jcs.179648

    PubMed  Google Scholar 

  67. Petrovska I, Nuske E, Munder MC, Kulasegaran G, Malinovska L, Kroschwald S, Richter D, Fahmy K, Gibson K, Verbavatz JM, Alberti S (2014) Filament formation by metabolic enzymes is a specific adaptation to an advanced state of cellular starvation. eLife 3:e02409. doi:10.7554/elife.02409

    PubMed Central  Article  Google Scholar 

  68. Prasad R, Kawaguchi S, Ng DT (2010) A nucleus-based quality control mechanism for cytosolic proteins. Mol Biol Cell 21:2117–2127. doi:10.1091/mbc.E10-02-0111

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. Ramachandran V, Shah KH, Herman PK (2011) The cAMP-dependent protein kinase signaling pathway is a key regulator of P body foci formation. Mol Cell 43:973–981. doi:10.1016/j.molcel.2011.06.032

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. Rampelt H, Kirstein-Miles J, Nillegoda NB, Chi K, Scholz SR, Morimoto RI, Bukau B (2012) Metazoan Hsp70 machines use Hsp110 to power protein disaggregation. EMBO J 31:4221–4235. doi:10.1038/emboj.2012.264

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. Reijns MA, Alexander RD, Spiller MP, Beggs JD (2008) A role for Q/N-rich aggregation-prone regions in P-body localization. J Cell Sci 121:2463–2472. doi:10.1242/jcs.024976

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. Saarikangas J, Barral Y (2015) Protein aggregates are associated with replicative aging without compromising protein quality control. eLife 4:e06197. doi: 10.7554/eLife.06197

    PubMed  PubMed Central  Article  Google Scholar 

  73. Sagot I, Pinson B, Salin B, Daignan-Fornier B (2006) Actin bodies in yeast quiescent cells: an immediately available actin reserve? Mol Biol Cell 17:4645–4655. doi:10.1091/mbc.E06-04-0282

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. Shah KH, Zhang B, Ramachandran V, Herman PK (2013) Processing body and stress granule assembly occur by independent and differentially regulated pathways in Saccharomyces cerevisiae. Genetics 193:109–123. doi:10.1534/genetics.112.146993

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. Shah KH, Nostramo R, Zhang B, Varia SN, Klett BM, Herman PK (2014) Protein kinases are associated with multiple, distinct cytoplasmic granules in quiescent yeast cells. Genetics 198:1495–1512. doi:10.1534/genetics.114.172031

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  76. Shcheprova Z, Baldi S, Frei SB, Gonnet G, Barral Y (2008) A mechanism for asymmetric segregation of age during yeast budding. Nature 454:728–734. doi:10.1038/nature07212

    CAS  PubMed  Google Scholar 

  77. Shorter J (2011) The mammalian disaggregase machinery: Hsp110 synergizes with Hsp70 and Hsp40 to catalyze protein disaggregation and reactivation in a cell-free system. PLoS One 6:e26319. doi:10.1371/journal.pone.0026319

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. Shorter J, Lindquist S (2004) Hsp104 catalyzes formation and elimination of self-replicating Sup35 prion conformers. Science 304:1793–1797. doi:10.1126/science.1098007

    CAS  PubMed  Article  Google Scholar 

  79. Si K (2015) Prions: what are they good for? Annu Rev Cell Dev Biol 31:149–169. doi:10.1146/annurev-cellbio-100913-013409

    CAS  PubMed  Article  Google Scholar 

  80. Sinclair DA, Guarente L (1997) Extrachromosomal rDNA circles: a cause of aging in yeast. Cell 91:1033–1042

    CAS  PubMed  Article  Google Scholar 

  81. Song J, Yang Q, Yang J, Larsson L, Hao X, Zhu X, Malmgren-Hill S, Cvijovic M, Fernandez-Rodriguez J, Grantham J, Gustafsson CM, Liu B, Nystrom T (2014) Essential genetic interactors of SIR2 required for spatial sequestration and asymmetrical inheritance of protein aggregates. PLoS Genet 10:e1004539. doi:10.1371/journal.pgen.1004539

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  82. Specht S, Miller SB, Mogk A, Bukau B (2011) Hsp42 is required for sequestration of protein aggregates into deposition sites in Saccharomyces cerevisiae. J Cell Biol 195:617–629. doi:10.1083/jcb.201106037

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. Spokoini R, Moldavski O, Nahmias Y, England JL, Schuldiner M, Kaganovich D (2012) Confinement to organelle-associated inclusion structures mediates asymmetric inheritance of aggregated protein in budding yeast. Cell reports 2:738–747 doi:10.1016/j.celrep.2012.08.024

    CAS  PubMed  Article  Google Scholar 

  84. Sun Z, Diaz Z, Fang X, Hart MP, Chesi A, Shorter J, Gitler AD (2011) Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS. PLoS Biol 9:e1000614. doi:10.1371/journal.pbio.1000614

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. Suresh HG, da Silveira Dos Santos AX, Kukulski W, Tyedmers J, Riezman H, Bukau B, Mogk A (2015) Prolonged starvation drives reversible sequestration of lipid biosynthetic enzymes and organelle reorganization in Saccharomyces cerevisiae. Mol Biol Cell 26:1601–1615. doi:10.1091/mbc.E14-11-1559

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. Szebenyi G, Wigley WC, Hall B, Didier A, Yu M, Thomas P, Kramer H (2007) Hook2 contributes to aggresome formation. BMC Cell Biol 8:19. doi:10.1186/1471-2121-8-19

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  87. Takahara T, Maeda T (2012) Transient sequestration of TORC1 into stress granules during heat stress. Mol Cell 47:242–252. doi:10.1016/j.molcel.2012.05.019

    CAS  PubMed  Article  Google Scholar 

  88. Teixeira D, Parker R (2007) Analysis of P-body assembly in Saccharomyces cerevisiae. Mol Biol Cell 18:2274–2287. doi:10.1091/mbc.E07-03-0199

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. Teixeira D, Sheth U, Valencia-Sanchez MA, Brengues M, Parker R (2005) Processing bodies require RNA for assembly and contain nontranslating mRNAs. RNA 11:371–382. doi:10.1261/rna.7258505

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. Thayer NH, Leverich CK, Fitzgibbon MP, Nelson ZW, Henderson KA, Gafken PR, Hsu JJ, Gottschling DE (2014) Identification of long-lived proteins retained in cells undergoing repeated asymmetric divisions. Proc Natl Acad Sci USA 111:14019–14026. doi:10.1073/pnas.1416079111

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. Tkach JM, Yimit A, Lee AY, Riffle M, Costanzo M, Jaschob D, Hendry JA, Ou J, Moffat J, Boone C, Davis TN, Nislow C, Brown GW (2012) Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nat Cell Biol 14:966–976. doi:10.1038/ncb2549

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. Tuite MF (2015) Yeast prions: paramutation at the protein level? Semin Cell Dev Biol 44:51–61. doi:10.1016/j.semcdb.2015.08.016

    CAS  PubMed  Article  Google Scholar 

  93. Tyedmers J, Treusch S, Dong J, McCaffery JM, Bevis B, Lindquist S (2010) Prion induction involves an ancient system for the sequestration of aggregated proteins and heritable changes in prion fragmentation. Proc Natl Acad Sci USA 107:8633–8638. doi:10.1073/pnas.1003895107

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. Unal E, Kinde B, Amon A (2011) Gametogenesis eliminates age-induced cellular damage and resets life span in yeast. Science 332:1554–1557. doi:10.1126/science.1204349

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  95. Vabulas RM, Raychaudhuri S, Hayer-Hartl M, Hartl FU (2010) Protein folding in the cytoplasm and the heat shock response. Cold Spring Harb Perspect Biol 2:a004390. doi:10.1101/cshperspect.a004390

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. Wallace EW, Kear-Scott JL, Pilipenko EV, Schwartz MH, Laskowski PR, Rojek AE, Katanski CD, Riback JA, Dion MF, Franks AM, Airoldi EM, Pan T, Budnik BA, Drummond DA (2015) Reversible, specific, active aggregates of endogenous proteins assemble upon heat stress. Cell 162:1286–1298. doi:10.1016/j.cell.2015.08.041

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. Wang JT, Smith J, Chen BC, Schmidt H, Rasoloson D, Paix A, Lambrus BG, Calidas D, Betzig E, Seydoux G (2014) Regulation of RNA granule dynamics by phosphorylation of serine-rich, intrinsically disordered proteins in C. elegans. Life 3:e04591. doi:10.7554/eLife.04591

    Google Scholar 

  98. Weber SC, Brangwynne CP (2012) Getting RNA and protein in phase. Cell 149:1188–1191. doi:10.1016/j.cell.2012.05.022

    CAS  PubMed  Article  Google Scholar 

  99. Weisberg SJ, Lyakhovetsky R, Werdiger AC, Gitler AD, Soen Y, Kaganovich D (2012) Compartmentalization of superoxide dismutase 1 (SOD1G93A) aggregates determines their toxicity. Proc Natl Acad Sci USA 109:15811–15816. doi:10.1073/pnas.1205829109

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. Wickner RB, Shewmaker FP, Bateman DA, Edskes HK, Gorkovskiy A, Dayani Y, Bezsonov EE (2015) Yeast prions: structure, biology, and prion-handling systems. Microbiol Mol Biol Rev 79:1–17. doi:10.1128/MMBR.00041-14

    PubMed  PubMed Central  Article  Google Scholar 

  101. Woerner AC, Frottin F, Hornburg D, Feng LR, Meissner F, Patra M, Tatzelt J, Mann M, Winklhofer KF, Hartl FU, Hipp MS (2016) Cytoplasmic protein aggregates interfere with nucleocytoplasmic transport of protein and RNA. Science 351:173–176. doi:10.1126/science.aad2033

    CAS  PubMed  Article  Google Scholar 

  102. Wolfe KJ, Ren HY, Trepte P, Cyr DM (2013) The Hsp70/90 cochaperone, Sti1, suppresses proteotoxicity by regulating spatial quality control of amyloid-like proteins. Mol Biol Cell 24:3588–3602. doi:10.1091/mbc.E13-06-0315

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. Yamamoto Y, Izawa S (2013) Adaptive response in stress granule formation and bulk translational repression upon a combined stress of mild heat shock and mild ethanol stress in yeast. Genes Cells 18:974–984. doi:10.1111/gtc.12090

    CAS  PubMed  Article  Google Scholar 

  104. Yang J, McCormick MA, Zheng J, Xie Z, Tsuchiya M, Tsuchiyama S, El-Samad H, Ouyang Q, Kaeberlein M, Kennedy BK, Li H (2015) Systematic analysis of asymmetric partitioning of yeast proteome between mother and daughter cells reveals “aging factors” and mechanism of lifespan asymmetry. Proc Natl Acad Sci USA 112:11977–11982. doi:10.1073/pnas.1506054112

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. Zhang H, Elbaum-Garfinkle S, Langdon EM, Taylor N, Occhipinti P, Bridges AA, Brangwynne CP, Gladfelter AS (2015) RNA controls PolyQ protein phase transitions. Mol Cell 60:220–230. doi:10.1016/j.molcel.2015.09.017

    CAS  PubMed  Article  Google Scholar 

  106. Zhou C, Slaughter BD, Unruh JR, Eldakak A, Rubinstein B, Li R (2011) Motility and segregation of Hsp104-associated protein aggregates in budding yeast. Cell 147:1186–1196. doi:10.1016/j.cell.2011.11.002

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. Zhou C, Slaughter BD, Unruh JR, Guo F, Yu Z, Mickey K, Narkar A, Ross RT, McClain M, Li R (2014) Organelle-based aggregation and retention of damaged proteins in asymmetrically dividing cells. Cell 159:530–542 doi:10.1016/j.cell.2014.09.026

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

We apologize to colleagues whose work we were unable to cite due to length restrains. We are thankful to Fabrice Caudron, Marek Krzyzanowski and Asim Sengör for comments on the manuscript. JS acknowledges FEBS and the Finnish Cultural Foundation and YB the European Research council and the ETH Zurich for financial support.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Juha Saarikangas or Yves Barral.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saarikangas, J., Barral, Y. Protein aggregation as a mechanism of adaptive cellular responses. Curr Genet 62, 711–724 (2016). https://doi.org/10.1007/s00294-016-0596-0

Download citation

Keywords

  • Compartmentalization
  • Mnemon
  • Adaptopod
  • Phase transition
  • Proteostasis
  • Amyloid