Skip to main content

Advertisement

Log in

Potential movement of transposable elements through DNA circularization

  • Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The generation of circular DNAs is a relatively unrecognized type of genomic structural variation, but recent findings point to a possible role of circular DNAs in the movement of transposable elements. Circularization of genomic DNA is observed across eukaryotic species, in a range of different cell types, and from all parts of the genome. A recent study on circular DNAs in yeast found that transposable element sequence residing in circular structures mostly corresponded to full-length transposable elements. Transposable elements are mobile genetic elements scattered across eukaryotic genomes. Different classes of transposable elements move either through a copy-and-paste or a cut-and-paste. As circular DNA structures may recombine with the genome and re-integrate into a novel genomic locus, transposable elements could move through circularization. In yeast, the predominant type of transposable element is a so-called LTR (long terminal repeats) retrotransposable element that moves through a copy-and-paste mechanism. The observed circularization of this element means it potentially could move through a cut-and-paste mechanism as well. Although further experimental evidence is needed to establish the extent to which movement of transposable elements through DNA circularization takes place, such movement is likely to have a functional impact on the genomic context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arkhipova I, Meselson M (2000) Transposable elements in sexual and ancient asexual taxa. Proc Natl Acad Sci USA 97:14473–14477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baillie JK, Barnett MW, Upton KR, Gerhardt DJ, Richmond TA, De Sapio F, Brennan PM, Rizzu P, Smith S, Fell M, Talbot RT, Gustincich S, Freeman TC, Mattick JS, Hume DA, Heutink P, Carninci P, Jeddeloh JA, Faulkner GJ (2011) Somatic retrotransposition alters the genetic landscape of the human brain. Nature 479:534–537. doi:10.1038/nature10531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belshaw R, Watson J, Katzourakis A, Howe A, Woolven-Allen J, Burt A, Tristem M (2007) Rate of recombinational deletion among human endogenous retroviruses. J Virol 81:9437–9442. doi:10.1128/JVI.02216-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cam HP, Noma K, Ebina H, Levin HL, Grewal SI (2008) Host genome surveillance for retrotransposons by transposon-derived proteins. Nature 451:431–436

    Article  CAS  PubMed  Google Scholar 

  • Carr M, Bensasson D, Bergman CM (2012) Evolutionary genomics of transposable elements in Saccharomyces cerevisiae. PLoS One 7:e50978. doi:10.1371/journal.pone.0050978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen S, Segal D (2009) Extrachromosomal circular DNA in eukaryotes: possible involvement in the plasticity of tandem repeats. Cytogenet Gen Res 124:327–338. doi:10.1159/000218136

    Article  CAS  Google Scholar 

  • Cordaux R, Batzer MA (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10:691–703. doi:10.1038/nrg2640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dillon LW, Kumar P, Shibata Y, Wang YH, Willcox S, Griffith JD, Pommier Y, Takeda S, Dutta A (2015) Production of extrachromosomal microDNAs is linked to mismatch repair pathways and transcriptional activity. Cell Rep 11:1749–1759. doi:10.1016/j.celrep.2015.05.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elliott TA, Gregory TR (2015) What’s in a genome? The C-value enigma and the evolution of eukaryotic genome content. Philos TR Soc B 370:20140331. doi:10.1098/rstb.2014.0331

    Article  Google Scholar 

  • Feng G, Leem YE, Levin HL (2013) Transposon integration enhances expression of stress response genes. Nucl Acid Res 41:775–789. doi:10.1093/nar/gks1185

    Article  CAS  Google Scholar 

  • Feschotte C, Pritham EJ (2007) DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41:331–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gai X, Voytas DF (1998) A single amino acid change in the yeast retrotransposon Ty5 abolishes targeting to silent chromatin. Mol Cell 1:1051–1055

    Article  CAS  PubMed  Google Scholar 

  • Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511

    Article  CAS  PubMed  Google Scholar 

  • Garfinkel DJ, Tucker JM, Saha A, Nishida Y, Pachulska-Wieczorek K, Blaszczyk L, Purzycka KJ (2015) A self-encoded capsid derivative restricts Ty1 retrotransposition in Saccharomyces. Curr Genet. doi:10.1007/s00294-015-0550-6

    PubMed  Google Scholar 

  • Gresham D, Usaite R, Germann SM, Lisby M, Botstein D, Regenberg B (2010) Adaptation to diverse nitrogen-limited environments by deletion or extrachromosomal element formation of the GAP1 locus. Proc Natl Acad Sci USA 107:18551–18556. doi:10.1073/pnas.1014023107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Havecker ER, Gao X, Voytas DF (2004) The diversity of LTR retrotransposons. Genome Biol 5:225. doi:10.1186/gb-2004-5-6-225

    Article  PubMed  PubMed Central  Google Scholar 

  • Izsvak Z, Wang J, Singh M, Mager DL, Hurst LD (2016) Pluripotency and the endogenous retrovirus HERVH: conflict or serendipity? BioEssays 38:109–117. doi:10.1002/bies.201500096

    Article  PubMed  Google Scholar 

  • Jeffares DC, Rallis C, Rieux A, Speed D, Prevorovsky M, Mourier T, Marsellach FX, Iqbal Z, Lau W, Cheng TM, Pracana R, Mulleder M, Lawson JL, Chessel A, Bala S, Hellenthal G, O’Fallon B, Keane T, Simpson JT, Bischof L, Tomiczek B, Bitton DA, Sideri T, Codlin S, Hellberg JE, van Trigt L, Jeffery L, Li JJ, Atkinson S, Thodberg M, Febrer M, McLay K, Drou N, Brown W, Hayles J, Salas RE, Ralser M, Maniatis N, Balding DJ, Balloux F, Durbin R, Bahler J (2015) The genomic and phenotypic diversity of Schizosaccharomyces pombe. Nat Genet 47:235–241. doi:10.1038/ng.3215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan IK, McDonald JF (1999) Tempo and mode of Ty element evolution in Saccharomyces cerevisiae. Genetics 151:1341–1351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kazazian HH Jr (2004) Mobile elements: drivers of genome evolution. Science 303:1626–1632. doi:10.1126/science.1089670

    Article  CAS  PubMed  Google Scholar 

  • Kim JM, Vanguri S, Boeke JD, Gabriel A, Voytas DF (1998) Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome. Gen Res 8:464–478. doi:10.1101/gr.8.5.464

    CAS  Google Scholar 

  • Klawitter S, Fuchs NV, Upton KR, Munoz-Lopez M, Shukla R, Wang J, Garcia-Canadas M, Lopez-Ruiz C, Gerhardt DJ, Sebe A, Grabundzija I, Merkert S, Gerdes P, Pulgarin JA, Bock A, Held U, Witthuhn A, Haase A, Sarkadi B, Lower J, Wolvetang EJ, Martin U, Ivics Z, Izsvak Z, Garcia-Perez JL, Faulkner GJ, Schumann GG (2016) Reprogramming triggers endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells. Nat commun 7:10286. doi:10.1038/ncomms10286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee E, Iskow R, Yang L, Gokcumen O, Haseley P, Luquette LJ 3rd, Lohr JG, Harris CC, Ding L, Wilson RK, Wheeler DA, Gibbs RA, Kucherlapati R, Lee C, Kharchenko PV, Park PJ (2012) Landscape of somatic retrotransposition in human cancers. Science 337:967–971. doi:10.1126/science.1222077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leem YE, Ripmaster TL, Kelly FD, Ebina H, Heincelman ME, Zhang K, Grewal SI, Hoffman CS, Levin HL (2008) Retrotransposon Tf1 is targeted to Pol II promoters by transcription activators. Mol Cell 30:98–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin HL, Moran JV (2011) Dynamic interactions between transposable elements and their hosts. Nat Rev Genet 12:615–627. doi:10.1038/nrg3030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Libuda DE, Winston F (2006) Amplification of histone genes by circular chromosome formation in Saccharomyces cerevisiae. Nature 443:1003–1007. doi:10.1038/nature05205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenz DR, Mikheyeva IV, Johansen P, Meyer L, Berg A, Grewal SI, Cam HP (2012) CENP-B cooperates with Set1 in bidirectional transcriptional silencing and genome organization of retrotransposons. Mol Cell Biol 32:4215–4225. doi:10.1128/MCB.00395-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luan DD, Korman MH, Jakubczak JL, Eickbush TH (1993) Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-Ltr retrotransposition. Cell 72:595–605. doi:10.1016/0092-8674(93)90078-5

    Article  CAS  PubMed  Google Scholar 

  • Maxwell PH (2015) What might retrotransposons teach us about aging? Curr Genet. doi:10.1007/s00294-015-0538-2

    PubMed  Google Scholar 

  • Medstrand P, van de Lagemaat LN, Mager DL (2002) Retroelement distributions in the human genome: variations associated with age and proximity to genes. Gen Res 12:1483–1495

    Article  CAS  Google Scholar 

  • Moller HD, Parsons L, Jorgensen TS, Botstein D, Regenberg B (2015) Extrachromosomal circular DNA is common in yeast. Proc Natl Acad Sci USA 112:E3114–E3122. doi:10.1073/pnas.1508825112

    Article  PubMed  PubMed Central  Google Scholar 

  • Moller HD, Larsen CE, Parsons L, Hansen AJ, Regenberg B, Mourier T (2016) Formation of extrachromosomal circular DNA from long terminal repeats of retrotransposons in Saccharomyces cerevisiae. G3 (Bethesda) 6:453–462. doi:10.1534/g3.115.025858

    Article  Google Scholar 

  • Mourier T, Willerslev E (2010) Large-scale transcriptome data reveals transcriptional activity of fission yeast LTR retrotransposons. BMC Genom 11:167. doi:10.1186/1471-2164-11-167

    Article  Google Scholar 

  • Mourier T, Nielsen LP, Hansen AJ, Willerslev E (2014) Transposable elements in cancer as a by-product of stress-induced evolvability. Front Genet 5:156. doi:10.3389/fgene.2014.00156

    Article  PubMed  PubMed Central  Google Scholar 

  • Munoz-Lopez M, Garcia-Perez JL (2010) DNA transposons: nature and applications in genomics. Curr Genom 11:115–128. doi:10.2174/138920210790886871

    Article  CAS  Google Scholar 

  • Muszewska A, Hoffman-Sommer M, Grynberg M (2011) LTR retrotransposons in fungi. PLoS One 6:e29425. doi:10.1371/journal.pone.0029425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Huallachain M, Karczewski KJ, Weissman SM, Urban AE, Snyder MP (2012) Extensive genetic variation in somatic human tissues. Proc Natl Acad Sci USA 109:18018–18023. doi:10.1073/pnas.1213736109

    Article  PubMed  PubMed Central  Google Scholar 

  • Orr-Weaver TL, Szostak JW, Rothstein RJ (1981) Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci USA 78:6354–6358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285. doi:10.1038/nrg2072

    Article  CAS  PubMed  Google Scholar 

  • Vogt N, Gibaud A, Lemoine F, de la Grange P, Debatisse M, Malfoy B (2014) Amplicon rearrangements during the extrachromosomal and intrachromosomal amplification process in a glioma. Nucl Acids Res 42:13194–13205. doi:10.1093/nar/gku1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Von Hoff DD, Forseth B, Clare CN, Hansen KL, VanDevanter D (1990) Double minutes arise from circular extrachromosomal DNA intermediates which integrate into chromosomal sites in human HL-60 leukemia cells. J Clin Invest 85:1887–1895. doi:10.1172/JCI114650

    Article  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    Article  CAS  PubMed  Google Scholar 

  • Yamagishi H, Tsuda T, Fujimoto S, Toda M, Kato K, Maekawa Y, Umeno M, Anai M (1983) Purification of small polydisperse circular DNA of eukaryotic cells by use of Atp-dependent deoxyribonuclease. Gene 26:317–321

    Article  CAS  PubMed  Google Scholar 

  • Zaratiegui M (2013) Influence of long terminal repeat retrotransposons in the genomes of fission yeasts. Biochem Soc Trans 41:1629–1633. doi:10.1042/BST20130207

    Article  CAS  PubMed  Google Scholar 

  • Zaratiegui M, Vaughn MW, Irvine DV, Goto D, Watt S, Bahler J, Arcangioli B, Martienssen RA (2011) CENP-B preserves genome integrity at replication forks paused by retrotransposon LTR. Nature 469:112–115. doi:10.1038/nature09608

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Mourier.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mourier, T. Potential movement of transposable elements through DNA circularization. Curr Genet 62, 697–700 (2016). https://doi.org/10.1007/s00294-016-0592-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-016-0592-4

Keywords

Navigation