Orthocaspase and toxin-antitoxin loci rubbing shoulders in the genome of Microcystis aeruginosa PCC 7806

Abstract

Programmed cell death in multicellular organisms is a coordinated and precisely regulated process. On the other hand, in bacteria we have little clue about the network of interacting molecules that result in the death of a single cell within a population or the death of almost complete population, such as often observed in cyanobacterial blooms. With the recent discovery that orthocaspase MaOC1 of the cyanobacterium Microcystis aeruginosa is an active proteolytic enzyme, we have gained a possible hint about at least one step in the process, but the picture is far from complete. Interestingly, the genomic context of MaOC1 revealed the presence of multiple copies of genes that belong to toxin–antitoxin modules. It has been speculated that these also play a role in bacterial programmed cell death. The discovery of two components linked to cell death within the same genomic region could open new ways to deciphering the underlying mechanisms of cyanobacterial cell death.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Allocati N, Masulli M, Di Ilio C, De Laurenzi V (2015) Die for the community: an overview of programmed cell death in bacteria. Cell Death Dis 6:e1609

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Amitai S, Yassin Y, Engelberg-Kulka H (2004) MazF-mediated cell death in Escherichia coli: a point of no return. J Bacteriol 186:8295–8300

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Aravind L, Koonin EV (2002) Classification of the caspase-hemoglobinase fold: detection of new families and implications for the origin of the eukaryotic separins. Proteins 46:355–367

    CAS  Article  PubMed  Google Scholar 

  4. Asplund-Samuelsson J (2015) The art of destruction: revealing the proteolytic capacity of bacterial caspase homologs. Mol Microbiol 98:1–6

    CAS  Article  PubMed  Google Scholar 

  5. Bar-Zeev E, Avishay I, Bidle KD, Berman-Frank I (2013) Programmed cell death in the marine cyanobacterium Trichodesmium mediates carbon and nitrogen export. ISME J 7:2340–2348

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Bayles KW (2014) Bacterial programmed cell death: making sense of a paradox. Nat Rev Microbiol 12:63–69

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Berman-Frank I, Bidle KD, Haramati L, Falkowski P (2004) The demise of the marine cyanobacterium, Trichodesmium spp., via an autocatalysed cell death pathway. Limnol Oceanogr 49:997–1005

    Article  Google Scholar 

  8. Boratyn GM, Schaffer AA, Agarwala R, Altschul SF, Lipman DJ, Madden TL (2012) Domain enhanced lookup time accelerated BLAST. Biol Dir 7:12

    CAS  Article  Google Scholar 

  9. Brantl S (2012) Bacterial type I toxin–antitoxin systems. RNA Biol 9:1488–1490

    CAS  Article  PubMed  Google Scholar 

  10. Brantl S, Jahn N (2015) sRNAs in bacterial type I and type III toxin–antitoxin systems. FEMS Microbiol Rev 39:413–427

    Article  PubMed  Google Scholar 

  11. Dawson RM (1998) The toxicology of microcystins. Toxicon 36:953–962

    CAS  Article  PubMed  Google Scholar 

  12. Ding Y, Gan N, Li J, Sedmak B, Song L (2012) Hydrogen peroxide induces apoptotic-like cell death in Microcystis aeruginosa (Chroococcales, Cyanobacteria) in a dose-dependent manner. Phycologia 51:567–575

    CAS  Article  Google Scholar 

  13. Donegan NP, Thompson ET, Fu Z, Cheung AL (2010) Proteolytic regulation of toxin–antitoxin systems by ClpPC in Staphylococcus aureus. J Bacteriol 192:1416–1422

    CAS  Article  PubMed  Google Scholar 

  14. Engelberg-Kulka H, Amitai S, Kolodkin-Gal I, Hazan R (2006) Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet 2:e135

    Article  PubMed  PubMed Central  Google Scholar 

  15. Erental A, Sharon I, Engelberg-Kulka H (2012) Two programmed cell death systems in Escherichia coli: an apoptotic-like death is inhibited by the mazEF-mediated death pathway. PLoS Biol 10:e1001281

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Frangeul L, Quillardet P, Castets AM, Humbert JF, Matthijs HC, Cortez D, Tolonen A, Zhang CC, Gribaldo S, Kehr JC, Zilliges Y, Ziemert N, Becker S, Talla E, Latifi A, Billault A, Lepelletier A, Dittmann E, Bouchier C, de Marsac NT (2008) Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxic freshwater cyanobacterium. BMC Genom 9:274

    Article  Google Scholar 

  17. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nunez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19:107–120

    CAS  Article  PubMed  Google Scholar 

  18. Gotfredsen M, Gerdes K (1998) The Escherichia coli relBE genes belong to a new toxin–antitoxin gene family. Mol Microbiol 29:1065–1076

    CAS  Article  PubMed  Google Scholar 

  19. Hachmann J, Snipas SJ, van Raam BJ, Cancino EM, Houlihan EJ, Poreba M, Kasperkiewicz P, Drag M, Salvesen GS (2012) Mechanism and specificity of the human paracaspase MALT1. Biochem J 443:287–295

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Humbert JF, Barbe V, Latifi A, Gugger M, Calteau A, Coursin T, Lajus A, Castelli V, Oztas S, Samson G, Longin C, Medigue C, de Marsac NT (2013) A tribute to disorder in the genome of the bloom-forming freshwater cyanobacterium Microcystis aeruginosa. PLoS ONE 8:e70747

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Jiang Q, Qin S, Wu QY (2010) Genome-wide comparative analysis of metacaspases in unicellular and filamentous cyanobacteria. BMC Genom 11:198

    Article  Google Scholar 

  22. Klemenčič M, Novinec M, Dolinar M (2015) Orthocaspases are proteolytically active prokaryotic caspase homologues: the case of Microcystis aeruginosa. Mol Microbiol 98:142–150

    Article  PubMed  Google Scholar 

  23. Masuda H, Tan Q, Awano N, Wu KP, Inouye M (2012) YeeU enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CbtA (YeeV) toxicity in Escherichia coli. Mol Microbiol 84:979–989

    CAS  Article  PubMed  Google Scholar 

  24. Mruk I, Kobayashi I (2014) To be or not to be: regulation of restriction-modification systems and other toxin–antitoxin systems. Nucleic Acids Res 42:70–86

    CAS  Article  PubMed  Google Scholar 

  25. Nedelcu AM, Driscoll WW, Durand PM, Herron MD, Rashidi A (2011) On the paradigm of altruistic suicide in the unicellular world. Evolution 65:3–20

    Article  PubMed  Google Scholar 

  26. Ning SB, Guo HL, Wang L, Song YC (2002) Salt stress induces programmed cell death in prokaryotic organism Anabaena. J Appl Microbiol 93:15–28

    CAS  Article  PubMed  Google Scholar 

  27. Ning D, Liu S, Xu W, Zhuang Q, Wen C, Tang X (2013) Transcriptional and proteolytic regulation of the toxin–antitoxin locus vapBC10 (ssr2962/slr1767) on the chromosome of Synechocystis sp. PCC 6803. PLoS ONE 8:e80716

    Article  PubMed  PubMed Central  Google Scholar 

  28. Otsuka S (2016) Prokaryotic toxin–antitoxin systems: novel regulations of the toxins. Curr Genet. doi:10.1007/s00294-015-0557-z

  29. Otsuka S, Suda S, Li R, Matsumoto S, Watanabe MM (2000) Morphological variability of colonies of Microcystis morphospecies in culture. J Genl Appl Microbiol 46:39–50

    CAS  Article  Google Scholar 

  30. Paerl HW, Fulton RS 3rd, Moisander PH, Dyble J (2001) Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci World J 1:76–113

    CAS  Article  Google Scholar 

  31. Pandey DP, Gerdes K (2005) Toxin–antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res 33:966–976

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Pedersen K, Christensen SK, Gerdes K (2002) Rapid induction and reversal of a bacteriostatic condition by controlled expression of toxins and antitoxins. Mol Microbiol 45:501–510

    CAS  Article  PubMed  Google Scholar 

  33. Rocker A, Meinhart A (2015) Type II toxin: antitoxin systems. More than small selfish entities? Curr Genet. doi:10.1007/s00294-015-0541-7

  34. Ross C, Santiago-Vazquez L, Paul V (2006) Toxin release in response to oxidative stress and programmed cell death in the cyanobacterium Microcystis aeruginosa. Aquat Toxicol 78:66–73

    CAS  Article  PubMed  Google Scholar 

  35. Sabart M, Pobel D, Latour D, Robin J, Salencon MJ, Humbert JF (2009) Spatiotemporal changes in the genetic diversity in French bloom-forming populations of the toxic cyanobacterium, Microcystis aeruginosa. Environ Microbiol Rep 1:263–272

    CAS  Article  PubMed  Google Scholar 

  36. Schuster CF, Bertram R (2013) Toxin–antitoxin systems are ubiquitous and versatile modulators of prokaryotic cell fate. FEMS Microbiol Lett 340:73–85

    CAS  Article  PubMed  Google Scholar 

  37. Shemarova IV (2010) Signaling mechanisms of apoptosis-like programmed cell death in unicellular eukaryotes. Comp Biochem Physiol Part B 155:341–353

    Article  Google Scholar 

  38. Sigee DC, Selwyn A, Gallois P, Dean AP (2007) Patterns of cell death in freshwater colonial cyanobacteria during the late summer bloom. Phycologia 46:284–292

    Article  Google Scholar 

  39. Tanouchi Y, Pai A, Buchler NE, You L (2012) Programming stress-induced altruistic death in engineered bacteria. Mol Syst Biol 8:626

    Article  PubMed  PubMed Central  Google Scholar 

  40. Uren AG, O’Rourke K, Aravind LA, Pisabarro MT, Seshagiri S, Koonin EV, Dixit VM (2000) Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6:961–967

    CAS  PubMed  Google Scholar 

  41. van Gremberghe I, Leliaert F, Mergeay J, Vanormelingen P, Van der Gucht K, Debeer AE, Lacerot G, De Meester L, Vyverman W (2011) Lack of phylogeographic structure in the freshwater cyanobacterium Microcystis aeruginosa suggests global dispersal. PLoS ONE 6:e19561

    Article  PubMed  PubMed Central  Google Scholar 

  42. Van Melderen L, Saavedra De Bast M (2009) Bacterial toxin–antitoxin systems: more than selfish entities? PLoS Genetics 5:e1000437

    Article  PubMed  PubMed Central  Google Scholar 

  43. Vercammen D, van de Cotte B, De Jaeger G, Eeckhout D, Casteels P, Vandepoele K, Vandenberghe I, Van Beeumen J, Inze D, Van Breusegem F (2004) Type II metacaspases Atmc4 and Atmc9 of Arabidopsis thaliana cleave substrates after arginine and lysine. J Biol Chem 279:45329–45336

    CAS  Article  PubMed  Google Scholar 

  44. Wang X, Lord DM, Cheng HY, Osbourne DO, Hong SH, Sanchez-Torres V, Quiroga C, Zheng K, Herrmann T, Peti W, Benedik MJ, Page R, Wood TK (2012) A new type V toxin–antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS. Nat Chem Biol 8:855–861

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Wang Y, Wang H, Hay AJ, Zhong Z, Zhu J, Kan B (2015) Functional RelBE-family toxin–antitoxin pairs affect biofilm maturation and intestine colonization in Vibrio cholerae. PLoS ONE 10:e0135696

    Article  PubMed  PubMed Central  Google Scholar 

  46. Watanabe N, Lam E (2005) Two Arabidopsis metacaspases AtMCP1b and AtMCP2b are arginine/lysine-specific cysteine proteases and activate apoptosis-like cell death in yeast. J Biol Chem 280:14691–14699

    CAS  Article  PubMed  Google Scholar 

  47. Wegener KM, Singh AK, Jacobs JM, Elvitigala T, Welsh EA, Keren N, Gritsenko MA, Ghosh BK, Camp DG 2nd, Smith RD, Pakrasi HB (2010) Global proteomics reveal an atypical strategy for carbon/nitrogen assimilation by a cyanobacterium under diverse environmental perturbations. Mol Cell Proteom 9:2678–2689

    CAS  Article  Google Scholar 

  48. Yamaguchi Y, Park JH, Inouye M (2011) Toxin–antitoxin systems in bacteria and archaea. Annu Rev Genet 45:61–79

    CAS  Article  PubMed  Google Scholar 

  49. Yang C, Lin F, Li Q, Li T, Zhao J (2015) Comparative genomics reveals diversified CRISPR-Cas systems of globally distributed Microcystis aeruginosa, a freshwater bloom-forming cyanobacterium. Front Microbiol 6:394

    PubMed  PubMed Central  Google Scholar 

  50. Zhai C, Zhang P, Shen F, Zhou C, Liu C (2012) Does Microcystis aeruginosa have quorum sensing? FEMS Microbiol Lett 336:38–44

    CAS  Article  PubMed  Google Scholar 

  51. Zhang YX, Li J, Guo XK, Wu C, Bi B, Ren SX, Wu CF, Zhao GP (2004) Characterization of a novel toxin–antitoxin module, VapBC, encoded by Leptospira interrogans chromosome. Cell Res 14:208–216

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

For a part of this project we have received funding from the European Union’s Seventh Programme for research, technological development and demonstration under Grant agreement No. 308518, CyanoFactory.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marko Dolinar.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Klemenčič, M., Dolinar, M. Orthocaspase and toxin-antitoxin loci rubbing shoulders in the genome of Microcystis aeruginosa PCC 7806. Curr Genet 62, 669–675 (2016). https://doi.org/10.1007/s00294-016-0582-6

Download citation

Keywords

  • Toxin–antitoxin systems
  • Caspase homologue
  • Programmed cell death
  • Metacaspase