Current Genetics

, Volume 62, Issue 4, pp 669–675 | Cite as

Orthocaspase and toxin-antitoxin loci rubbing shoulders in the genome of Microcystis aeruginosa PCC 7806

  • Marina Klemenčič
  • Marko DolinarEmail author


Programmed cell death in multicellular organisms is a coordinated and precisely regulated process. On the other hand, in bacteria we have little clue about the network of interacting molecules that result in the death of a single cell within a population or the death of almost complete population, such as often observed in cyanobacterial blooms. With the recent discovery that orthocaspase MaOC1 of the cyanobacterium Microcystis aeruginosa is an active proteolytic enzyme, we have gained a possible hint about at least one step in the process, but the picture is far from complete. Interestingly, the genomic context of MaOC1 revealed the presence of multiple copies of genes that belong to toxin–antitoxin modules. It has been speculated that these also play a role in bacterial programmed cell death. The discovery of two components linked to cell death within the same genomic region could open new ways to deciphering the underlying mechanisms of cyanobacterial cell death.


Toxin–antitoxin systems Caspase homologue Programmed cell death Metacaspase 



For a part of this project we have received funding from the European Union’s Seventh Programme for research, technological development and demonstration under Grant agreement No. 308518, CyanoFactory.


  1. Allocati N, Masulli M, Di Ilio C, De Laurenzi V (2015) Die for the community: an overview of programmed cell death in bacteria. Cell Death Dis 6:e1609CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amitai S, Yassin Y, Engelberg-Kulka H (2004) MazF-mediated cell death in Escherichia coli: a point of no return. J Bacteriol 186:8295–8300CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aravind L, Koonin EV (2002) Classification of the caspase-hemoglobinase fold: detection of new families and implications for the origin of the eukaryotic separins. Proteins 46:355–367CrossRefPubMedGoogle Scholar
  4. Asplund-Samuelsson J (2015) The art of destruction: revealing the proteolytic capacity of bacterial caspase homologs. Mol Microbiol 98:1–6CrossRefPubMedGoogle Scholar
  5. Bar-Zeev E, Avishay I, Bidle KD, Berman-Frank I (2013) Programmed cell death in the marine cyanobacterium Trichodesmium mediates carbon and nitrogen export. ISME J 7:2340–2348CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bayles KW (2014) Bacterial programmed cell death: making sense of a paradox. Nat Rev Microbiol 12:63–69CrossRefPubMedPubMedCentralGoogle Scholar
  7. Berman-Frank I, Bidle KD, Haramati L, Falkowski P (2004) The demise of the marine cyanobacterium, Trichodesmium spp., via an autocatalysed cell death pathway. Limnol Oceanogr 49:997–1005CrossRefGoogle Scholar
  8. Boratyn GM, Schaffer AA, Agarwala R, Altschul SF, Lipman DJ, Madden TL (2012) Domain enhanced lookup time accelerated BLAST. Biol Dir 7:12CrossRefGoogle Scholar
  9. Brantl S (2012) Bacterial type I toxin–antitoxin systems. RNA Biol 9:1488–1490CrossRefPubMedGoogle Scholar
  10. Brantl S, Jahn N (2015) sRNAs in bacterial type I and type III toxin–antitoxin systems. FEMS Microbiol Rev 39:413–427CrossRefPubMedGoogle Scholar
  11. Dawson RM (1998) The toxicology of microcystins. Toxicon 36:953–962CrossRefPubMedGoogle Scholar
  12. Ding Y, Gan N, Li J, Sedmak B, Song L (2012) Hydrogen peroxide induces apoptotic-like cell death in Microcystis aeruginosa (Chroococcales, Cyanobacteria) in a dose-dependent manner. Phycologia 51:567–575CrossRefGoogle Scholar
  13. Donegan NP, Thompson ET, Fu Z, Cheung AL (2010) Proteolytic regulation of toxin–antitoxin systems by ClpPC in Staphylococcus aureus. J Bacteriol 192:1416–1422CrossRefPubMedGoogle Scholar
  14. Engelberg-Kulka H, Amitai S, Kolodkin-Gal I, Hazan R (2006) Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet 2:e135CrossRefPubMedPubMedCentralGoogle Scholar
  15. Erental A, Sharon I, Engelberg-Kulka H (2012) Two programmed cell death systems in Escherichia coli: an apoptotic-like death is inhibited by the mazEF-mediated death pathway. PLoS Biol 10:e1001281CrossRefPubMedPubMedCentralGoogle Scholar
  16. Frangeul L, Quillardet P, Castets AM, Humbert JF, Matthijs HC, Cortez D, Tolonen A, Zhang CC, Gribaldo S, Kehr JC, Zilliges Y, Ziemert N, Becker S, Talla E, Latifi A, Billault A, Lepelletier A, Dittmann E, Bouchier C, de Marsac NT (2008) Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxic freshwater cyanobacterium. BMC Genom 9:274CrossRefGoogle Scholar
  17. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nunez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19:107–120CrossRefPubMedGoogle Scholar
  18. Gotfredsen M, Gerdes K (1998) The Escherichia coli relBE genes belong to a new toxin–antitoxin gene family. Mol Microbiol 29:1065–1076CrossRefPubMedGoogle Scholar
  19. Hachmann J, Snipas SJ, van Raam BJ, Cancino EM, Houlihan EJ, Poreba M, Kasperkiewicz P, Drag M, Salvesen GS (2012) Mechanism and specificity of the human paracaspase MALT1. Biochem J 443:287–295CrossRefPubMedPubMedCentralGoogle Scholar
  20. Humbert JF, Barbe V, Latifi A, Gugger M, Calteau A, Coursin T, Lajus A, Castelli V, Oztas S, Samson G, Longin C, Medigue C, de Marsac NT (2013) A tribute to disorder in the genome of the bloom-forming freshwater cyanobacterium Microcystis aeruginosa. PLoS ONE 8:e70747CrossRefPubMedPubMedCentralGoogle Scholar
  21. Jiang Q, Qin S, Wu QY (2010) Genome-wide comparative analysis of metacaspases in unicellular and filamentous cyanobacteria. BMC Genom 11:198CrossRefGoogle Scholar
  22. Klemenčič M, Novinec M, Dolinar M (2015) Orthocaspases are proteolytically active prokaryotic caspase homologues: the case of Microcystis aeruginosa. Mol Microbiol 98:142–150CrossRefPubMedGoogle Scholar
  23. Masuda H, Tan Q, Awano N, Wu KP, Inouye M (2012) YeeU enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CbtA (YeeV) toxicity in Escherichia coli. Mol Microbiol 84:979–989CrossRefPubMedGoogle Scholar
  24. Mruk I, Kobayashi I (2014) To be or not to be: regulation of restriction-modification systems and other toxin–antitoxin systems. Nucleic Acids Res 42:70–86CrossRefPubMedGoogle Scholar
  25. Nedelcu AM, Driscoll WW, Durand PM, Herron MD, Rashidi A (2011) On the paradigm of altruistic suicide in the unicellular world. Evolution 65:3–20CrossRefPubMedGoogle Scholar
  26. Ning SB, Guo HL, Wang L, Song YC (2002) Salt stress induces programmed cell death in prokaryotic organism Anabaena. J Appl Microbiol 93:15–28CrossRefPubMedGoogle Scholar
  27. Ning D, Liu S, Xu W, Zhuang Q, Wen C, Tang X (2013) Transcriptional and proteolytic regulation of the toxin–antitoxin locus vapBC10 (ssr2962/slr1767) on the chromosome of Synechocystis sp. PCC 6803. PLoS ONE 8:e80716CrossRefPubMedPubMedCentralGoogle Scholar
  28. Otsuka S (2016) Prokaryotic toxin–antitoxin systems: novel regulations of the toxins. Curr Genet. doi: 10.1007/s00294-015-0557-z
  29. Otsuka S, Suda S, Li R, Matsumoto S, Watanabe MM (2000) Morphological variability of colonies of Microcystis morphospecies in culture. J Genl Appl Microbiol 46:39–50CrossRefGoogle Scholar
  30. Paerl HW, Fulton RS 3rd, Moisander PH, Dyble J (2001) Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci World J 1:76–113CrossRefGoogle Scholar
  31. Pandey DP, Gerdes K (2005) Toxin–antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res 33:966–976CrossRefPubMedPubMedCentralGoogle Scholar
  32. Pedersen K, Christensen SK, Gerdes K (2002) Rapid induction and reversal of a bacteriostatic condition by controlled expression of toxins and antitoxins. Mol Microbiol 45:501–510CrossRefPubMedGoogle Scholar
  33. Rocker A, Meinhart A (2015) Type II toxin: antitoxin systems. More than small selfish entities? Curr Genet. doi: 10.1007/s00294-015-0541-7
  34. Ross C, Santiago-Vazquez L, Paul V (2006) Toxin release in response to oxidative stress and programmed cell death in the cyanobacterium Microcystis aeruginosa. Aquat Toxicol 78:66–73CrossRefPubMedGoogle Scholar
  35. Sabart M, Pobel D, Latour D, Robin J, Salencon MJ, Humbert JF (2009) Spatiotemporal changes in the genetic diversity in French bloom-forming populations of the toxic cyanobacterium, Microcystis aeruginosa. Environ Microbiol Rep 1:263–272CrossRefPubMedGoogle Scholar
  36. Schuster CF, Bertram R (2013) Toxin–antitoxin systems are ubiquitous and versatile modulators of prokaryotic cell fate. FEMS Microbiol Lett 340:73–85CrossRefPubMedGoogle Scholar
  37. Shemarova IV (2010) Signaling mechanisms of apoptosis-like programmed cell death in unicellular eukaryotes. Comp Biochem Physiol Part B 155:341–353CrossRefGoogle Scholar
  38. Sigee DC, Selwyn A, Gallois P, Dean AP (2007) Patterns of cell death in freshwater colonial cyanobacteria during the late summer bloom. Phycologia 46:284–292CrossRefGoogle Scholar
  39. Tanouchi Y, Pai A, Buchler NE, You L (2012) Programming stress-induced altruistic death in engineered bacteria. Mol Syst Biol 8:626CrossRefPubMedPubMedCentralGoogle Scholar
  40. Uren AG, O’Rourke K, Aravind LA, Pisabarro MT, Seshagiri S, Koonin EV, Dixit VM (2000) Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6:961–967PubMedGoogle Scholar
  41. van Gremberghe I, Leliaert F, Mergeay J, Vanormelingen P, Van der Gucht K, Debeer AE, Lacerot G, De Meester L, Vyverman W (2011) Lack of phylogeographic structure in the freshwater cyanobacterium Microcystis aeruginosa suggests global dispersal. PLoS ONE 6:e19561CrossRefPubMedPubMedCentralGoogle Scholar
  42. Van Melderen L, Saavedra De Bast M (2009) Bacterial toxin–antitoxin systems: more than selfish entities? PLoS Genetics 5:e1000437CrossRefPubMedPubMedCentralGoogle Scholar
  43. Vercammen D, van de Cotte B, De Jaeger G, Eeckhout D, Casteels P, Vandepoele K, Vandenberghe I, Van Beeumen J, Inze D, Van Breusegem F (2004) Type II metacaspases Atmc4 and Atmc9 of Arabidopsis thaliana cleave substrates after arginine and lysine. J Biol Chem 279:45329–45336CrossRefPubMedGoogle Scholar
  44. Wang X, Lord DM, Cheng HY, Osbourne DO, Hong SH, Sanchez-Torres V, Quiroga C, Zheng K, Herrmann T, Peti W, Benedik MJ, Page R, Wood TK (2012) A new type V toxin–antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS. Nat Chem Biol 8:855–861CrossRefPubMedPubMedCentralGoogle Scholar
  45. Wang Y, Wang H, Hay AJ, Zhong Z, Zhu J, Kan B (2015) Functional RelBE-family toxin–antitoxin pairs affect biofilm maturation and intestine colonization in Vibrio cholerae. PLoS ONE 10:e0135696CrossRefPubMedPubMedCentralGoogle Scholar
  46. Watanabe N, Lam E (2005) Two Arabidopsis metacaspases AtMCP1b and AtMCP2b are arginine/lysine-specific cysteine proteases and activate apoptosis-like cell death in yeast. J Biol Chem 280:14691–14699CrossRefPubMedGoogle Scholar
  47. Wegener KM, Singh AK, Jacobs JM, Elvitigala T, Welsh EA, Keren N, Gritsenko MA, Ghosh BK, Camp DG 2nd, Smith RD, Pakrasi HB (2010) Global proteomics reveal an atypical strategy for carbon/nitrogen assimilation by a cyanobacterium under diverse environmental perturbations. Mol Cell Proteom 9:2678–2689CrossRefGoogle Scholar
  48. Yamaguchi Y, Park JH, Inouye M (2011) Toxin–antitoxin systems in bacteria and archaea. Annu Rev Genet 45:61–79CrossRefPubMedGoogle Scholar
  49. Yang C, Lin F, Li Q, Li T, Zhao J (2015) Comparative genomics reveals diversified CRISPR-Cas systems of globally distributed Microcystis aeruginosa, a freshwater bloom-forming cyanobacterium. Front Microbiol 6:394PubMedPubMedCentralGoogle Scholar
  50. Zhai C, Zhang P, Shen F, Zhou C, Liu C (2012) Does Microcystis aeruginosa have quorum sensing? FEMS Microbiol Lett 336:38–44CrossRefPubMedGoogle Scholar
  51. Zhang YX, Li J, Guo XK, Wu C, Bi B, Ren SX, Wu CF, Zhao GP (2004) Characterization of a novel toxin–antitoxin module, VapBC, encoded by Leptospira interrogans chromosome. Cell Res 14:208–216CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations