Abstract
Bacterial genomes encode numerous and often sophisticated signaling devices to perceive changes in their environment and mount appropriate adaptive responses. With their help, microbes are able to orchestrate specific decision-making processes that alter the cellular behavior, but also integrate and communicate information. Moreover and beyond, some signal transducing systems also enable bacteria to remember and learn from previous stimuli to anticipate environmental changes. As recently suggested, all of these aspects indicate that bacteria do, in fact, exhibit cognition remarkably reminiscent of what we refer to as intelligent behavior, at least when referred to higher eukaryotes. In this essay, comprehensive data derived from comparative genomics analyses of microbial signal transduction systems are used to probe the concept of cognition in bacterial cells. Using a recent comprehensive analysis of over 100 actinobacterial genomes as a test case, we illustrate the different layers of the capacities of bacteria that result in cognitive and behavioral complexity as well as some form of ‘bacterial intelligence’. We try to raise awareness to approach bacteria as cognitive organisms and believe that this view would enrich and open a new path in the experimental studies of bacterial signal transducing systems.
Similar content being viewed by others
References
Adler J (1975) Chemotaxis in bacteria. Annu Rev Biochem 44:341–356. doi:10.1146/annurev.bi.44.070175.002013
Bray D (1990) Intracellular signalling as a parallel distributed process. J Theor Biol 143:215–231
Bush MJ, Tschowri N, Schlimpert S et al (2015) c-di-GMP signalling and the regulation of developmental transitions in streptomycetes. Nat Rev Microbiol 13:749–760. doi:10.1038/nrmicro3546
Cole ST, Eiglmeier K, Parkhill J et al (2001) Massive gene decay in the leprosy Bacillus. Nature 409:1007–1011. doi:10.1038/35059006
Flärdh K, Buttner MJ (2009) Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 7:36–49. doi:10.1038/nrmicro1968
Galperin MY (2005) A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts. BMC Microbiol 5:35. doi:10.1186/1471-2180-5-35
Galperin MY (2006) Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J Bacteriol 188:4169–4182. doi:10.1128/JB.01887-05
González AJ, Trapiello E (2014) Clavibacter michiganensis subsp. phaseoli subsp. nov., pathogenic in bean. Int J Syst Evol Microbiol 64:1752–1755. doi:10.1099/ijs.0.058099-0
Gruber TM, Gross CA (2003) Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol 57:441–466. doi:10.1146/annurev.micro.57.030502.090913
Hellingwerf KJ (2005) Bacterial observations: a rudimentary form of intelligence? Trends Microbiol 13:152–158. doi:10.1016/j.tim.2005.02.001
Hellingwerf KJ, Postma PW, Tommassen J, Westerhoff HV (1995) Signal transduction in bacteria: phospho-neural network(s) in Escherichia coli? FEMS Microbiol Rev 16:309–321. doi: 10.1016/0168-6445(95)00019-9
Helmann JD (2002) The extracytoplasmic function (ECF) sigma factors. Adv Microb Physiol 46:47–110
Hoch JA (1993) Regulation of the phosphorelay and the initiation of sporulation in Bacillus subtilis. Annu Rev Microbiol 47:441–465. doi:10.1146/annurev.mi.47.100193.002301
Hoffer SM, Westerhoff HV, Hellingwerf KJ et al (2001) Autoamplification of a two-component regulatory system results in “learning” behavior. Society 183:4914–4917. doi:10.1128/JB.183.16.4914
Huang X, Pinto D, Fritz G, Mascher T (2015) Environmental sensing in Actinobacteria: a comprehensive survey on the signaling capacity of this phylum. J Bacteriol 197:2517–2535. doi:10.1128/JB.00176-15
Jogler C, Waldmann J, Huang X et al (2012) Identification of proteins likely to be involved in morphogenesis, cell division, and signal transduction in Planctomycetes by comparative genomics. J Bacteriol 194:6419–6430. doi:10.1128/JB.01325-12
Jung SA, Hawver LA, Ng W-L (2015) Parallel quorum sensing signaling pathways in Vibrio cholerae. Curr Genet. doi:10.1007/s00294-015-0532-8
Khandige S, Møller-Jensen J (2015) Fimbrial phase variation: stochastic or cooperative? Curr Genet. doi:10.1007/s00294-015-0529-3
Koshland DE, Goldbeter A, Stock JB (1982) Amplification and adaptation in regulatory and sensory systems. Science 217:220–225. doi:10.1126/science.7089556
López D, Kolter R (2010) Extracellular signals that define distinct and coexisting cell fates in Bacillus subtilis. FEMS Microbiol Rev 34:134–149. doi:10.1111/j.1574-6976.2009.00199.x
Lyon P (2015) The cognitive cell: bacterial behavior reconsidered. Front Microbiol 6:1–19. doi:10.3389/fmicb.2015.00264
Makovcova J, Slany M, Babak V et al (2014) The water environment as a source of potentially pathogenic mycobacteria. J Water Health 12:254–263. doi:10.2166/wh.2013.102
Martínková L, Uhnáková B, Pátek M et al (2009) Biodegradation potential of the genus Rhodococcus. Environ Int 35:162–177. doi:10.1016/j.envint.2008.07.018
Mascher T (2013) Signaling diversity and evolution of extracytoplasmic function (ECF) σ factors. Curr Opin Microbiol 16:148–155. doi:10.1016/j.mib.2013.02.001
Mascher T (2014) Bacterial (intramembrane-sensing) histidine kinases: signal transfer rather than stimulus perception. Trends Microbiol 22:1–7. doi:10.1016/j.tim.2014.05.006
Mascher T, Helmann JD, Unden G (2006) Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev 70:910–938. doi:10.1128/MMBR.00020-06
McCormick JR, Flärdh K (2012) Signals and regulators that govern Streptomyces development. FEMS Microbiol Rev 36:206–231. doi:10.1111/j.1574-6976.2011.00317.x
Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199. doi:10.1146/annurev.micro.55.1.165
Mitchell A, Romano GH, Groisman B et al (2009) Adaptive prediction of environmental changes by microorganisms. Nature 460:220–224. doi:10.1038/nature08112
Ng W-L, Bassler BL (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222. doi:10.1146/annurev-genet-102108-134304
Paget MSB, Helmann JD (2003) Protein family review the 70 family of sigma factors. Genome Biol 4:203
Park Y, Kook M, Ngo HTT et al (2014) Arthrobacter bambusae sp. nov., isolated from soil of a bamboo grove. Int J Syst Evol Microbiol 64:3069–3074. doi:10.1099/ijs.0.064550-0
Pereira SFF, Goss L, Dworkin J (2011) Eukaryote-like serine/threonine kinases and phosphatases in bacteria. Microbiol Mol Biol Rev 75:192–212. doi:10.1128/MMBR.00042-10
Pinto D, Mascher T (2016) The ECF classification: a phylogenetic reflection of the regulatory diversity in the extracytoplasmic function sigma factor protein family. In: de Bruijn FJ (ed) Stress and environmental control of gene expression in bacteria. Wiley-Blackwell, Hoboken
Porter SL, Wadhams GH, Armitage JP (2011) Signal processing in complex chemotaxis pathways. Nat Rev Microbiol 9:153–165. doi:10.1038/nrmicro2505
Shapiro J (1988) Bacteria as multicellular organisms. Sci Am 258:82–89. doi:10.1038/scientificamerican0688-82
Shapiro JA (1998) Thinking about bacterial populations as multicellular organisms. Annu Rev Microbiol 52:81–104. doi:10.1146/annurev.micro.52.1.81
Shettleworth SJ (1998) Cognition, evolution and behavior. Oxford University Press, New York
Shleeva M, Mukamolova GV, Young M et al (2004) Formation of “non-culturable” cells of Mycobacterium smegmatis in stationary phase in response to growth under suboptimal conditions and their Rpf-mediated resuscitation. Microbiology 150:1687–1697. doi:10.1099/mic.0.26893-0
Starón A, Mascher T (2010) Extracytoplasmic function factors come of age. Microbe 5:164–170
Staroń A, Sofia HJ, Dietrich S et al (2009) The third pillar of bacterial signal transduction: classification of the extracytoplasmic function (ECF) sigma factor protein family. Mol Microbiol 74:557–581. doi:10.1111/j.1365-2958.2009.06870.x
Stock J (1999) Sensitivity, cooperativity and gain in chemotaxis signal transduction. Trends Microbiol 7:1–4
Stock JB, Zhang S (2013) The biochemistry of memory. Curr Biol 23:R741–R745. doi:10.1016/j.cub.2013.08.011
Stock JB, Levit MN, Wolanin PM (2002) Information processing in bacterial chemotaxis. Sci Signal 2002:pe25. doi:10.1126/stke.2002.132.pe25
Ulrich LE, Zhulin IB (2010) The MiST2 database: a comprehensive genomics resource on microbial signal transduction. Nucleic Acids Res 38:D401–D407. doi:10.1093/nar/gkp940
Ulrich LE, Koonin EV, Zhulin IB (2005) One-component systems dominate signal transduction in prokaryotes. Trends Microbiol 13:52–56. doi:10.1016/j.tim.2004.12.006
Vázquez-Boland JA, Giguère S, Hapeshi A et al (2013) Rhodococcus equi: the many facets of a pathogenic actinomycete. Vet Microbiol 167:9–33. doi:10.1016/j.vetmic.2013.06.016
Veening JW, Stewart EJ, Berngruber TW et al (2008) Bet-hedging and epigenetic inheritance in bacterial cell development. Proc Natl Acad Sci USA 105:4393–4398
Wadhams GH, Armitage JP (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5:1024–1037. doi:10.1038/nrm1524
Westerhoff HV, Brooks AN, Simeonidis E et al (2014) Macromolecular networks and intelligence in microorganisms. Front Microbiol 5:1–17. doi:10.3389/fmicb.2014.00379
Wolf DM, Fontaine-Bodin L, Bischofs I et al (2008) Memory in microbes: quantifying history-dependent behavior in a bacterium. PLoS ONE 3:e1700. doi:10.1371/journal.pone.0001700
Acknowledgments
Work on bacterial signal transduction in the Mascher lab has been funded by grants from the Deutsche Forschungsgemeinschaft (DFG, to TM).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Funding
D. Pinto receives funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA Grant agreement no. 628509.
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Communicated by M. Kupiec.
Rights and permissions
About this article
Cite this article
Pinto, D., Mascher, T. (Actino)Bacterial “intelligence”: using comparative genomics to unravel the information processing capacities of microbes. Curr Genet 62, 487–498 (2016). https://doi.org/10.1007/s00294-016-0569-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00294-016-0569-3