Advertisement

Current Genetics

, Volume 62, Issue 3, pp 481–486 | Cite as

Regulation of DNA replication proteins in parasitic protozoans: possible role of CDK-like kinases

  • Abhijit S. Deshmukh
  • Meetu Agarwal
  • Suman Kumar DharEmail author
Review

Abstract

Regulatory roles of CDKs in fundamental processes including cell cycle progression and transcription are well conserved in metazoans. This family of proteins has undergone significant evolutionary divergence and specialization. Several CDK-like kinases have been identified and characterized in parasitic protozoans. However, clear functional role and physiological relevance of these proteins in protozoans still remain elusive. In continuation with the recent finding that CDK-like protein PfPK5 regulates important DNA replication protein like origin recognition complex subunit 1 in Plasmodium falciparum, here we have discussed the emerging significance of CDK1/2 homologs in DNA replication of parasitic protozoans. In fact, involvement of these proteins in crucial cellular processes projects them as potential drug targets. The possibilities that CDKs offer as potential therapeutic targets in controlling parasite progression have also been explored.

Keywords

Apicomplexan Malaria Toxoplasmosis Coccidiosis Cryptosporidiosis Theileriosis Plasmodium falciparum Eimeria tenella Toxoplasma gondii Sarcocystis neurona ORC Cyclins Pk5 

Notes

Acknowledgments

Authors acknowledge DST-PURSE, DBT-Builder, DBT-CoE in Parasitology and UGC-SAP for funding and thank Sabyasachi Pradhan for his assistance with designing the model. Meetu Agarwal acknowledges CSIR, India, for fellowship. Abhijit S. Deshmukh acknowledges the Department of Science and Technology, India, for INSPIRE fellowship.

References

  1. Aressy B, Ducommun B (2008) Cell cycle control by the CDC25 phosphatases. Anticancer Agents Med Chem 8:818–824CrossRefPubMedGoogle Scholar
  2. Arnot DE, Ronander E, Bengtsson DC (2011) The progression of the intra-erythrocytic cell cycle of Plasmodium falciparum and the role of the centriolar plaques in asynchronous mitotic division during schizogony. Int J Parasitol 41:71–80CrossRefPubMedGoogle Scholar
  3. Bell SP, Dutta A (2002) DNA replication in eukaryotic cells. Annu Rev Biochem 71:333–374CrossRefPubMedGoogle Scholar
  4. Benmerzouga I, Concepcion-Acevedo J, Kim HS, Vandoros AV, Cross GA, Klingbeil MM, Li B (2013) Trypanosoma brucei Orc1 is essential for nuclear DNA replication and affects both VSG silencing and VSG switching. Mol Microbiol 87:196–210CrossRefPubMedGoogle Scholar
  5. Borgne A, Meijer L (1996) Sequential dephosphorylation of p34(cdc2) on Thr-14 and Tyr-15 at the prophase/metaphase transition. J Biol Chem 271:27847–27854CrossRefPubMedGoogle Scholar
  6. Bracchi-Ricard V, Barik S, Delvecchio C, Doerig C, Chakrabarti R, Chakrabarti D (2000) PfPK6, a novel cyclin-dependent kinase/mitogen-activated protein kinase-related protein kinase from Plasmodium falciparum. Biochem J 347(Part1):255–263CrossRefPubMedPubMedCentralGoogle Scholar
  7. Deshmukh AS, Srivastava S, Herrmann S, Gupta A, Mitra P, Gilberger TW, Dhar SK (2012) The role of N-terminus of Plasmodium falciparum ORC1 in telomeric localization and var gene silencing. Nucleic Acids Res 40:5313–5331CrossRefPubMedPubMedCentralGoogle Scholar
  8. Deshmukh AS, Agarwal M, Mehra P, Gupta A, Gupta N (2015) Regulation of Plasmodium falciparum origin recognition complex subunit 1 (PfORC1) function through phosphorylation mediated by CDK-like kinase PK5. Mol Microbiol 98:17–33CrossRefPubMedGoogle Scholar
  9. Doerig C (2004) Protein kinases as targets for anti-parasitic chemotherapy. Biochim Biophys Acta 1697:155–168CrossRefPubMedGoogle Scholar
  10. Doerig C, Endicott J, Chakrabarti D (2002) Cyclin-dependent kinase homologues of Plasmodium falciparum. Int J Parasitol 32:1575–1585CrossRefPubMedGoogle Scholar
  11. Doerig C, Billker O, Haystead T, Sharma P, Tobin AB, Waters NC (2008) Protein kinases of malaria parasites: an update. Trends Parasitol 24:570–577CrossRefPubMedGoogle Scholar
  12. Dorin-Semblat D, Carvalho TG, Nivez MP, Halbert J, Pouller P et al (2013) An atypical cyclin-dependent kinase controls Plasmodium falciparum proliferation rate. Kinome 1:4–16CrossRefGoogle Scholar
  13. Findeisen M, El-Denary M, Kapitza T, Graf R, Strausfeld U (1999) Cyclin A-dependent kinase activity affects chromatin binding of ORC, Cdc6, and MCM in egg extracts of Xenopuslaevis. Eur J Biochem 264:415–426CrossRefPubMedGoogle Scholar
  14. Francia ME, Striepen B (2014) Cell division in apicomplexan parasites. Nat Rev Microbiol 12:125–136CrossRefPubMedGoogle Scholar
  15. Gerald N, Mahajan B, Kumar S (2011) Mitosis in the human malaria parasite Plasmodium falciparum. Eukaryot Cell 10:474–482CrossRefPubMedPubMedCentralGoogle Scholar
  16. Geyer JA, Keenan SM, Woodard CL, Thompson PA, Gerena L, Nichols DA, Gutteridge CE, Waters NC (2009) Selective inhibition of Pfmrk, a Plasmodium falciparum CDK, by antimalarial 1,3-diaryl-2-propenones. Bioorg Med Chem Lett 19:1982–1985CrossRefPubMedGoogle Scholar
  17. Graeser R, Franklin RM, Kappes B (1996) Mechanisms of activation of the cdc2-related kinase PfPK5 from Plasmodium falciparum. Mol Biochem Parasitol 79:125–127CrossRefPubMedGoogle Scholar
  18. Gupta A, Mehra P, Dhar SK (2008) Plasmodium falciparum origin recognition complex subunit 5: functional characterization and role in DNA replication foci formation. Mol Microbiol 69:646–665CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gupta A, Mehra P, Deshmukh A, Dar A, Mitra P, Roy N, Dhar SK (2009) Functional dissection of the catalytic carboxyl-terminal domain of origin recognition complex subunit 1 (PfORC1) of the human malaria parasite Plasmodium falciparum. Eukaryot Cell 8:1341–1351CrossRefPubMedPubMedCentralGoogle Scholar
  20. Halbert J, Ayong L, Equinet L, Le Roch K, Hardy M, Goldring D, Reininger L, Waters N, Chakrabarti D, Doerig C (2010) A Plasmodium falciparum transcriptional cyclin-dependent kinase-related kinase with a crucial role in parasite proliferation associates with histone deacetylase activity. Eukaryot Cell 9:952–959CrossRefPubMedPubMedCentralGoogle Scholar
  21. Holton S, Merckx A, Burgess D, Doerig C, Noble M, Endicott J (2003) Structures of P. falciparum PfPK5 test the CDK regulation paradigm and suggest mechanisms of small molecule inhibition. Structure 11:1329–1337CrossRefPubMedGoogle Scholar
  22. Houze S, Hoang NT, Lozach O, Le Bras J, Meijer L, Galons H, Demange L (2014) Several human cyclin-dependent kinase inhibitors, structurally related to roscovitine, are new anti-malarial agents. Molecules 19:15237–15257CrossRefPubMedGoogle Scholar
  23. Jirage D, Chen Y, Caridha D, O’Neil MT, Eyase F, Witola WH, Mamoun CB, Waters NC (2010) The malarial CDK Pfmrk and its effector PfMAT1 phosphorylate DNA replication proteins and co-localize in the nucleus. Mol Biochem Parasitol 172:9–18CrossRefPubMedGoogle Scholar
  24. Keenan SM, Welsh WJ (2004) Characteristics of the Plasmodium falciparum PK5 ATP-binding site: implications for the design of novel antimalarial agents. J Mol Graph Model 22:241–247CrossRefPubMedGoogle Scholar
  25. Khan F, Tang J, Qin CL, Kim K (2002) Cyclin-dependent kinase TPK2 is a critical cell cycle regulator in Toxoplasma gondii. Mol Microbiol 45:321–332CrossRefPubMedGoogle Scholar
  26. Kinnaird JH, Bumstead JM, Mann DJ, Ryan R, Shirley MW, Shiels BR, Tomley FM (2004) EtCRK2, a cyclin-dependent kinase gene expressed during the sexual and asexual phases of the Eimeria tenella life cycle. Int J Parasitol 34:683–692CrossRefPubMedGoogle Scholar
  27. Kinnard JH, Tait A, Logan M, Kirvar E, Carrington M (1996) Isolation and charecterization of a cdc2-related protein from the bovine protozoan parasite Theileria. Mol Microbiol 22:293–302CrossRefGoogle Scholar
  28. Kvaal CA, Radke JR, Guerini MN, White MW (2002) Isolation of a Toxoplasma gondii cyclin by yeast two-hybrid interactive screen. Mol Biochem Parasitol 120:187–194CrossRefPubMedGoogle Scholar
  29. Le Roch K, Sestier C, Dorin D, Waters N, Kappes B, Chakrabarti D, Meijer L, Doerig C (2000) Activation of a Plasmodium falciparum cdc2-related kinase by heterologous p25 and cyclin H. Functional characterization of a P. falciparum cyclin homologue. J Biol Chem 275:8952–8958CrossRefPubMedGoogle Scholar
  30. Lee KY, Bang SW, Yoon SW, Lee SH, Yoon JB, Hwang DS (2012) Phosphorylation of ORC2 protein dissociates origin recognition complex from chromatin and replication origins. J Biol Chem 287:11891–11898CrossRefPubMedPubMedCentralGoogle Scholar
  31. Li JL, Robson KJ, Chen JL, Targett GA, Baker DA (1996) Pfmrk, a MO15-related protein kinase from Plasmodium falciparum. Gene cloning, sequence, stage-specific expression and chromosome localization. Eur J Biochem 241:805–813CrossRefPubMedGoogle Scholar
  32. Mailand N, Gibbs-Seymour I, Bekker-Jensen S (2013) Regulation of PCNA-protein interactions for genome stability. Nat Rev Mol Cell Biol 14(5):269–282CrossRefPubMedGoogle Scholar
  33. Makise M, Takehara M, Kuniyasu A, Matsui N, Nakayama H, Mizushima T (2009) Linkage between phosphorylation of the origin recognition complex and its ATP binding activity in Saccharomyces cerevisiae. J Biol Chem 284:3396–3407CrossRefPubMedGoogle Scholar
  34. Mancio-Silva L, Rojas-Meza AP, Vargas M, Scherf A, Hernandez-Rivas R (2008) Differential association of Orc1 and Sir2 proteins to telomeric domains in Plasmodium falciparum. J Cell Sci 121:2046–2053CrossRefPubMedGoogle Scholar
  35. Mehra P, Biswas AK, Gupta A, Gourinath S, Chitnis CE, Dhar SK (2005) Expression and characterization of human malaria parasite Plasmodium falciparum origin recognition complex subunit 1. Biochem Biophys Res Commun 337:955–966CrossRefPubMedGoogle Scholar
  36. Merckx A, Le Rosh K, Nivez MP, Dorin D, Alano P, Gutierrez GJ et al (2003) Identification and initial characterization of three novel cyclin-related proteins of the human malaria parasite Plasmodium falciparum. J Biol Chem 278:39839–39850CrossRefPubMedGoogle Scholar
  37. Mitra P, Banu K, Deshmukh AS, Subbarao N, Dhar SK (2015) Functional dissection of proliferating-cell nuclear antigens (1 and 2) in human malarial parasite Plasmodium falciparum: possible involvement in DNA replication and DNA damage response. Biochem J 470:115–129CrossRefPubMedGoogle Scholar
  38. Moldovan GL, Pfander B, Jentsch S (2007) PCNA, the maestro of the replication fork. Cell 129(4):665–679CrossRefPubMedGoogle Scholar
  39. Remus D, Blanchette M, Rio DC, Botchan MR (2005) CDK phosphorylation inhibits the DNA-binding and ATP-hydrolysis activities of the Drosophila origin recognition complex. J Biol Chem 280:39740–39751CrossRefPubMedGoogle Scholar
  40. Roques M, Wall RJ, Douglass AP, Ramaprasad A, Ferguson DJ, Kaindama ML, Brusini L, Joshi N, Rchiad Z, Brady D et al (2015) Plasmodium P-type cyclin CYC3 modulates endomitotic growth during oocyst development in mosquitoes. PLoS Pathog 11:e1005273CrossRefPubMedPubMedCentralGoogle Scholar
  41. Ross-Macdonald PB, Graeser R, Kappes B, Franklin R, Williamson DH (1994) Isolation and expression of a gene specifying a cdc2-like protein kinase from the human malaria parasite Plasmodium falciparum. Eur J Biochem 220:693–701CrossRefPubMedGoogle Scholar
  42. Striepen B, Jordan CN, Reiff S, van Dooren GG (2007) Building the perfect parasite: cell division in apicomplexa. PLoS Pathog 3:e78CrossRefPubMedPubMedCentralGoogle Scholar
  43. Treeck M, Sanders JL, Elias JE, Boothroyd JC (2011) Thephosphoproteomes of Plasmodium falciparum and Toxoplasma gondii reveal unusual adaptations within and beyond the parasites’ boundaries. Cell Host Microbe 10:410–419CrossRefPubMedPubMedCentralGoogle Scholar
  44. Vas A, Mok W, Leatherwood J (2001) Control of DNA rereplication via Cdc2 phosphorylation sites in the origin recognition complex. Mol Cell Biol 21:5767–5777CrossRefPubMedPubMedCentralGoogle Scholar
  45. Wang SC, Nakajima Y, Yu YL, Xia W, Chen CT, Yang CC, McIntush EW, Li LY, Hawke DH, Kobayashi R, Hung MC (2006) Tyrosine phosphorylation controls PCNA function through protein stability. Nat Cell Biol 8:1359–1368CrossRefPubMedGoogle Scholar
  46. Ward P, Equinet L, Packer J, Doerig C (2004) Protein kinases of the human malaria parasite Plasmodium falciparum: the kinome of a divergent eukaryote. BMC Genom 12:79CrossRefGoogle Scholar
  47. White MW, Radke J, Conde de Felipe M, Lehmann M (2007) Cell cycle control/parasite division. Horizon Scientific Press, NorwichGoogle Scholar
  48. Woo RA, Poon RY (2003) Cyclin-dependent kinases and S phase control in mammalian cells. Cell Cycle 2:316–324CrossRefPubMedGoogle Scholar
  49. Woodward CL, Li Z, Kathcart AK, Terrell J, Gerena L, Lopez-Sanchez M, Kyle DE, Bhattacharjee AK, Nichols DA, Ellis W et al (2003) Oxindole-based compounds are selective inhibitors of Plasmodium falciparum cyclin dependent protein kinases. J Med Chem 46:3877–3882CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Abhijit S. Deshmukh
    • 1
  • Meetu Agarwal
    • 2
  • Suman Kumar Dhar
    • 2
    Email author
  1. 1.National Institute of Animal BiotechnologyHyderabadIndia
  2. 2.Special Centre for Molecular MedicineJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations