Skip to main content

Advertisement

Log in

Phenotypic plasticity within yeast colonies: differential partitioning of cell fates

  • Original Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Across many phyla, a common aspect of multicellularity is the organization of different cell types into spatial patterns. In the budding yeast Saccharomyces cerevisiae, after diploid colonies have completed growth, they differentiate to form alternating layers of sporulating cells and feeder cells. In the current study, we found that as yeast colonies developed, the feeder cell layer was initially separated from the sporulating cell layer. Furthermore, the spatial pattern of sporulation in colonies depended on the colony’s nutrient environment; in two environments in which overall colony sporulation efficiency was very similar, the pattern of feeder and sporulating cells within the colony was very different. As noted previously, under moderately suboptimal conditions for sporulation—low acetate concentration or high temperature—the number of feeder cells increases as does the dependence of sporulation on the feeder-cell transcription factor, Rlm1. Here we report that even under a condition that is completely blocked sporulation, the number of feeder cells still increased. These results suggest broader implications to our recently proposed “Differential Partitioning provides Environmental Buffering” or DPEB hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Download references

Acknowledgments

We are grateful for the use of the confocal microscope in the University Missouri, Kansas City School of Dentistry Confocal Microscopy Core. This facility is supported by the UMKC Office of Research Services, the UMKC Center of Excellence in Dental and Musculoskeletal Tissues, and NIH grant S10RR027668. We are grateful to Dr. David Levin (Boston University) for the UASRlm1-LacZ plasmid. We thank Mr. Benjamin Iwai for sectioning embedded colonies. Research in this publication was funded by the National Institutes of General Medical Sciences of the NIH under award number R15GM094770.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saul M. Honigberg.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piccirillo, S., Kapros, T. & Honigberg, S.M. Phenotypic plasticity within yeast colonies: differential partitioning of cell fates. Curr Genet 62, 467–473 (2016). https://doi.org/10.1007/s00294-015-0558-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-015-0558-y

Keywords

Navigation