Abstract
mRNA is a nexus entity between DNA and translating ribosomes. Recent developments in deep sequencing technologies coupled with structural probing have revealed new insights beyond the classic role of mRNA and place it more centrally as a direct effector of a variety of processes, including translation, cellular localization, and mRNA degradation. Here, we highlight emerging approaches to probe mRNA secondary structure on a global transcriptome-wide level and compare their potential and resolution. Combined approaches deliver a richer and more complex picture. While our understanding on the effect of secondary structure for various cellular processes is quite advanced, the next challenge is to unravel more complex mRNA architectures and tertiary interactions.

Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Cox RA, Littauer UZ (1959) Secondary structure of ribonucleic acid in solution. Nature 184(Suppl 11):818–819
Del Campo C, Bartholomaus A, Fedyunin I, Ignatova Z (2015) Secondary structure across the bacterial transcriptome reveals versatile roles in mRNA regulation and function. PLoS Genet 11:e1005613. doi:10.1371/journal.pgen.1005613
Ding Y, Tang Y, Kwok CK, Zhang Y, Bevilacqua PC, Assmann SM (2014) In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 505:696–700. doi:10.1038/nature12756
Eddy SR (2014) Computational analysis of conserved RNA secondary structure in transcriptomes and genomes. Annu Rev Biophys 43:433–456. doi:10.1146/annurev-biophys-051013-022950
Incarnato D, Neri F, Anselmi F, Oliviero S (2014) Genome-wide profiling of mouse RNA secondary structures reveals key features of the mammalian transcriptome. Genome Biol 15:491. doi:10.1186/s13059-014-0491-2
Kertesz M, Wan Y, Mazor E, Rinn JL, Nutter RC, Chang HY, Segal E (2010) Genome-wide measurement of RNA secondary structure in yeast. Nature 467:103–107. doi:10.1038/nature09322
Kwok CK, Ding Y, Tang Y, Assmann SM, Bevilacqua PC (2013) Determination of in vivo RNA structure in low-abundance transcripts. Nat Commun 4:2971. doi:10.1038/ncomms3971
Li F, Zheng Q, Ryvkin P, Dragomir I, Desai Y, Aiyer S, Valladares O, Yang J, Bambina S, Sabin LR, Murray JI, Lamitina T, Raj A, Cherry S, Wang LS, Gregory BD (2012a) Global analysis of RNA secondary structure in two metazoans. Cell Rep 1:69–82. doi:10.1016/j.celrep.2011.10.002
Li F, Zheng Q, Vandivier LE, Willmann MR, Chen Y, Gregory BD (2012b) Regulatory impact of RNA secondary structure across the Arabidopsis transcriptome. Plant Cell 24:4346–4359. doi:10.1105/tpc.112.104232
Lucks JB, Mortimer SA, Trapnell C, Luo S, Aviran S, Schroth GP, Pachter L, Doudna JA, Arkin AP (2011) Multiplexed RNA structure characterization with selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Proc Natl Acad Sci USA 108:11063–11068. doi:10.1073/pnas.1106501108
Moio P, Kulyyassov A, Vertut D, Camoin L, Ramankulov E, Lipinski M, Ogryzko V (2011) Exploring the use of dimethylsulfate for in vivo proteome footprinting. Proteomics 11:249–260. doi:10.1002/pmic.200900832
Ramani V, Qiu R, Shendure J (2015) High-throughput determination of RNA structure by proximity ligation. Nat Biotechnol 33:980–984. doi:10.1038/nbt.3289
Rouskin S, Zubradt M, Washietl S, Kellis M, Weissman JS (2014) Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505:701–705. doi:10.1038/nature12894
Spitale RC, Crisalli P, Flynn RA, Torre EA, Kool ET, Chang HY (2013) RNA SHAPE analysis in living cells. Nat Chem Biol 9:18–20. doi:10.1038/nchembio.1131
Spitale RC, Flynn RA, Torre EA, Kool ET, Chang HY (2014) RNA structural analysis by evolving SHAPE chemistry. Wiley Interdiscip Rev RNA 5:867–881. doi:10.1002/wrna.1253
Spitale RC, Flynn RA, Zhang QC, Crisalli P, Lee B, Jung JW, Kuchelmeister HY, Batista PJ, Torre EA, Kool ET, Chang HY (2015) Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519:486–490. doi:10.1038/nature14263
Sugimoto Y, Vigilante A, Darbo E, Zirra A, Militti C, D’Ambrogio A, Luscombe NM, Ule J (2015) hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1. Nature 519:491–494. doi:10.1038/nature14280
Talkish J, May G, Lin Y, Woolford JL Jr, McManus CJ (2014) Mod-seq: high-throughput sequencing for chemical probing of RNA structure. RNA 20:713–720. doi:10.1261/rna.042218.113
Tijerina P, Mohr S, Russell R (2007) DMS footprinting of structured RNAs and RNA–protein complexes. Nat Protoc 2:2608–2623. doi:10.1038/nprot.2007.380
Tyrrell J, McGinnis JL, Weeks KM, Pielak GJ (2013) The cellular environment stabilizes adenine riboswitch RNA structure. Biochemistry 52:8777–8785. doi:10.1021/bi401207q
Underwood JG, Uzilov AV, Katzman S, Onodera CS, Mainzer JE, Mathews DH, Lowe TM, Salama SR, Haussler D (2010) FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing. Nat Methods 7:995–1001. doi:10.1038/nmeth.1529
Wan Y, Qu K, Zhang QC, Flynn RA, Manor O, Ouyang Z, Zhang J, Spitale RC, Snyder MP, Segal E, Chang HY (2014) Landscape and variation of RNA secondary structure across the human transcriptome. Nature 505:706–709. doi:10.1038/nature12946
Wilkinson KA, Merino EJ, Weeks KM (2006) Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution. Nat Protoc 1:1610–1616. doi:10.1038/nprot.2006.249
Zheng Q, Ryvkin P, Li F, Dragomir I, Valladares O, Yang J, Cao K, Wang LS, Gregory BD (2010) Genome-wide double-stranded RNA sequencing reveals the functional significance of base-paired RNAs in Arabidopsis. PLoS Genet 6:e1001141. doi:10.1371/journal.pgen.1001141
Ziehler WA, Engelke DR (2001) Probing RNA structure with chemical reagents and enzymes. Curr Protoc Nucleic Acid Chem Chapter 6:Unit 6.1. doi:10.1002/0471142700.nc0601s00
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by M. Kupiec.
Rights and permissions
About this article
Cite this article
Del Campo, C., Ignatova, Z. Probing dimensionality beyond the linear sequence of mRNA. Curr Genet 62, 331–334 (2016). https://doi.org/10.1007/s00294-015-0551-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00294-015-0551-5


