Skip to main content
Log in

Pseudomonas aeruginosa: breaking down barriers

  • Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Many bacterial pathogens have evolved ingenious ways to escape from the lung during pneumonia to cause bacteremia. Unfortunately, the clinical consequences of this spread to the bloodstream are frequently dire. It is therefore important to understand the molecular mechanisms used by pathogens to breach the lung barrier. We have recently shown that Pseudomonas aeruginosa, one of the leading causes of hospital-acquired pneumonia, utilizes the type III secretion system effector ExoS to intoxicate pulmonary epithelial cells. Injection of these cells leads to localized disruption of the pulmonary-vascular barrier and dissemination of P. aeruginosa to the bloodstream. We put these data in the context of previous studies to provide a holistic model of P. aeruginosa dissemination from the lung. Finally, we compare P. aeruginosa dissemination to that of other bacteria to highlight the complexity of bacterial pneumonia. Although respiratory pathogens use distinct and intricate strategies to escape from the lungs, a thorough understanding of these processes can lay the foundation for new therapeutic approaches for bacterial pneumonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Achouiti A et al (2012) Myeloid-related protein-14 contributes to protective immunity in gram-negative pneumonia derived sepsis. PLoS Pathog 8:e1002987. doi:10.1371/journal.ppat.1002987

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Balamayooran G, Batra S, Theivanthiran B, Cai S, Pacher P, Jeyaseelan S (2012) Intrapulmonary G-CSF rescues neutrophil recruitment to the lung and neutrophil release to blood in Gram-negative bacterial infection in MCP-1-/- mice. J Immunol 189:5849–5859. doi:10.4049/jimmunol.1200585

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barbieri AM, Sha Q, Bette-Bobillo P, Stahl PD, Vidal M (2001) ADP-ribosylation of Rab5 by ExoS of Pseudomonas aeruginosa affects endocytosis. Infect Immun 69:5329–5334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berube BJ, Bubeck Wardenburg J (2013) Staphylococcus aureus alpha-toxin: nearly a century of intrigue. Toxins (Basel) 5:1140–1166

  • Bhowmick R, Tin Maung NH, Hurley BP, Ghanem EB, Gronert K, McCormick BA, Leong JM (2013) Systemic disease during Streptococcus pneumoniae acute lung infection requires 12-lipoxygenase-dependent inflammation. J Immunol 191:5115–5123. doi:10.4049/jimmunol.1300522

    Article  CAS  PubMed  Google Scholar 

  • Bubeck Wardenburg J, Schneewind O (2008) Vaccine protection against Staphylococcus aureus pneumonia. J Exp Med 205:287–294. doi:10.1084/jem.20072208

  • Bubeck Wardenburg J, Bae T, Otto M, Deleo FR, Schneewind O (2007) Poring over pores: alpha-hemolysin and Panton-Valentine leukocidin in Staphylococcus aureus pneumonia. Nat Med 13:1405–1406. doi:10.1038/nm1207-1405

  • de Boer JD et al (2014) Overexpression of activated protein C hampers bacterial dissemination during pneumococcal pneumonia. BMC Infect Dis 14:559. doi:10.1186/s12879-014-0559-3

    Article  PubMed Central  PubMed  Google Scholar 

  • Duitman J, Hoogendijk AJ, Groot AP, Ruela de Sousa RR, van der Poll T, Florquin S, Spek CA (2012a) CCAAT-enhancer binding protein delta (C/EBPdelta) protects against Klebsiella pneumoniae-induced pulmonary infection: potential role for macrophage migration. J Infect Dis 206:1826–1835. doi:10.1093/infdis/jis615

    Article  CAS  PubMed  Google Scholar 

  • Duitman J et al (2012b) CCAAT/enhancer-binding protein delta facilitates bacterial dissemination during pneumococcal pneumonia in a platelet-activating factor receptor-dependent manner. Proc Natl Acad Sci USA 109:9113–9118. doi:10.1073/pnas.1202641109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • El-Solh AA, Hattemer A, Hauser AR, Alhajhusain A, Vora H (2012) Clinical outcomes of type III Pseudomonas aeruginosa bacteremia. Crit Care Med 40:1157–1163. doi:10.1097/CCM.0b013e3182377906

    Article  PubMed Central  PubMed  Google Scholar 

  • Fagon JY, Chastre J, Domart Y, Trouillet JL, Pierre J, Darne C, Gibert C (1989) Nosocomial pneumonia in patients receiving continuous mechanical ventilation. Prospective analysis of 52 episodes with use of a protected specimen brush and quantitative culture techniques. Am Rev Respir Dis 139:877–884. doi:10.1164/ajrccm/139.4.877

    Article  CAS  PubMed  Google Scholar 

  • Feltman H, Schulert G, Khan S, Jain M, Peterson L, Hauser AR (2001) Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa. Microbiology 147:2659–2669

    Article  CAS  PubMed  Google Scholar 

  • Fraylick JE, La Rocque JR, Vincent TS, Olson JC (2001) Independent and coordinate effects of ADP-ribosyltransferase and GTPase-activating activities of exoenzyme S on HT-29 epithelial cell function. Infect Immun 69:5318–5328

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • George DL et al (1998) Epidemiology of ventilator-acquired pneumonia based on protected bronchoscopic sampling. Am J Respir Crit Care Med 158:1839–1847. doi:10.1164/ajrccm.158.6.9610069

    Article  CAS  PubMed  Google Scholar 

  • Goehring UM, Schmidt G, Pederson KJ, Aktories K, Barbieri JT (1999) The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases. J Biol Chem 274:36369–36372

    Article  CAS  PubMed  Google Scholar 

  • Golovkine G, Faudry E, Bouillot S, Voulhoux R, Attree I, Huber P (2014) VE-cadherin cleavage by LasB protease from Pseudomonas aeruginosa facilitates type III secretion system toxicity in endothelial cells. PLoS Pathog 10:e1003939. doi:10.1371/journal.ppat.1003939

    Article  PubMed Central  PubMed  Google Scholar 

  • Gouaux E (1998) alpha-Hemolysin from Staphylococcus aureus: an archetype of beta-barrel, channel-forming toxins. J Struct Biol 121:110–122. doi:10.1006/jsbi.1998.3959

    Article  CAS  PubMed  Google Scholar 

  • Hauser AR (2009) The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol 7:654–665. doi:10.1038/nrmicro2199

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heiniger RW, Winther-Larsen HC, Pickles RJ, Koomey M, Wolfgang MC (2010) Infection of human mucosal tissue by Pseudomonas aeruginosa requires sequential and mutually dependent virulence factors and a novel pilus-associated adhesin. Cell Microbiol 12:1158–1173. doi:10.1111/j.1462-5822.2010.01461.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heyland DK, Cook DJ, Griffith L, Keenan SP, Brun-Buisson C (1999) The attributable morbidity and mortality of ventilator-associated pneumonia in the critically ill patient. The Canadian Critical Trials Group. Am J Respir Crit Care Med 159:1249–1256. doi:10.1164/ajrccm.159.4.9807050

    Article  CAS  PubMed  Google Scholar 

  • Hoogerwerf JJ et al (2012) Interleukin-1 receptor-associated kinase M-deficient mice demonstrate an improved host defense during Gram-negative pneumonia. Mol Med 18:1067–1075. doi:10.2119/molmed.2011.00450

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huber P, Bouillot S, Elsen S, Attree I (2014) Sequential inactivation of Rho GTPases and Lim kinase by Pseudomonas aeruginosa toxins ExoS and ExoT leads to endothelial monolayer breakdown. Cell Mol Life Sci CMLS 71:1927–1941. doi:10.1007/s00018-013-1451-9

    Article  CAS  PubMed  Google Scholar 

  • Inoshima I, Inoshima N, Wilke GA, Powers ME, Frank KM, Wang Y, Bubeck Wardenburg J (2011) A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nat Med 17:1310–1314. doi:10.1038/nm.2451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Inoshima N, Wang Y, Wardenburg JB (2012) Genetic requirement for ADAM10 in severe Staphylococcus aureus skin infection. J Invest Dermatol 132:1513–1516. doi:10.1038/jid.2011.462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kalin M et al (2000) Prospective study of prognostic factors in community-acquired bacteremic pneumococcal disease in 5 countries. J Infect Dis 182:840–847. doi:10.1086/315760

    Article  CAS  PubMed  Google Scholar 

  • Klevens RM et al (2007) Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA J Am Med Assoc 298:1763–1771. doi:10.1001/jama.298.15.1763

    Article  CAS  Google Scholar 

  • Laichalk LL, Kunkel SL, Strieter RM, Danforth JM, Bailie MB, Standiford TJ (1996) Tumor necrosis factor mediates lung antibacterial host defense in murine Klebsiella pneumonia. Infect Immun 64:5211–5218

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339:520–532. doi:10.1056/NEJM199808203390806

    Article  CAS  PubMed  Google Scholar 

  • Luttge M et al (2012) Streptococcus pneumoniae induces exocytosis of Weibel-Palade bodies in pulmonary endothelial cells. Cell Microbiol 14:210–225. doi:10.1111/j.1462-5822.2011.01712.x

    Article  PubMed  Google Scholar 

  • Magret M et al (2011) Bacteremia is an independent risk factor for mortality in nosocomial pneumonia: a prospective and observational multicenter study. Crit Care 15:R62. doi:10.1186/cc10036

    Article  PubMed Central  PubMed  Google Scholar 

  • Marfin AA, Sporrer J, Moore PS, Siefkin AD (1995) Risk factors for adverse outcome in persons with pneumococcal pneumonia. Chest 107:457–462

    Article  CAS  PubMed  Google Scholar 

  • Moore TA, Perry ML, Getsoian AG, Newstead MW, Standiford TJ (2002) Divergent role of gamma interferon in a murine model of pulmonary versus systemic Klebsiella pneumoniae infection. Infect Immun 70:6310–6318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mufson MA (1981) Pneumococcal infections. JAMA J Am Med Assoc 246:1942–1948

    Article  CAS  Google Scholar 

  • Pederson KJ, Barbieri JT (1998) Intracellular expression of the ADP-ribosyltransferase domain of Pseudomonas exoenzyme S is cytotoxic to eukaryotic cells. Mol Microbiol 30:751–759

    Article  CAS  PubMed  Google Scholar 

  • Pederson KJ, Vallis AJ, Aktories K, Frank DW, Barbieri JT (1999) The amino-terminal domain of Pseudomonas aeruginosa ExoS disrupts actin filaments via small-molecular-weight GTP-binding proteins. Mol Microbiol 32:393–401

    Article  CAS  PubMed  Google Scholar 

  • Pena C et al (2013) Effect of adequate single-drug vs combination antimicrobial therapy on mortality in Pseudomonas aeruginosa bloodstream infections: a post Hoc analysis of a prospective cohort. Clin Infect Dis 57:208–216. doi:10.1093/cid/cit223

    Article  CAS  PubMed  Google Scholar 

  • Penaloza HF et al (2015) Interleukin-10 plays a key role in the modulation of neutrophils recruitment and lung inflammation during infection by Streptococcus pneumoniae. Immunology 146:100–112. doi:10.1111/imm.12486

  • Podschun R, Ullmann U (1998) Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11:589–603

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rangel SM, Logan LK, Hauser AR (2014) The ADP-ribosyltransferase domain of the effector protein ExoS inhibits phagocytosis of Pseudomonas aeruginosa during pneumonia. MBio 5:e01014–e01080. doi:10.1128/mBio.01080-14

    Article  Google Scholar 

  • Rangel SM, Diaz MH, Knoten CA, Zhang A, Hauser AR (2015) The role of ExoS in dissemination of Pseudomonas aeruginosa during pneumonia. PLoS Pathog 11:e1004945. doi:10.1371/journal.ppat.1004945

    Article  PubMed Central  PubMed  Google Scholar 

  • Rello J, Gallego M, Mariscal D, Sonora R, Valles J (1997) The value of routine microbial investigation in ventilator-associated pneumonia. Am J Respir Crit Care Med 156:196–200. doi:10.1164/ajrccm.156.1.9607030

    Article  CAS  PubMed  Google Scholar 

  • Rocha CL, Coburn J, Rucks EA, Olson JC (2003) Characterization of Pseudomonas aeruginosa exoenzyme S as a bifunctional enzyme in J774A.1 macrophages. Infect Immun 71:5296–5305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rosendahl A, Bergmann S, Hammerschmidt S, Goldmann O, Medina E (2013) Lung dendritic cells facilitate extrapulmonary bacterial dissemination during pneumococcal pneumonia. Front Cell Infect Microbiol 3:21. doi:10.3389/fcimb.2013.00021

    Article  PubMed Central  PubMed  Google Scholar 

  • Saftig P, Hartmann D (2005) ADAM10 The ADAM family of proteases. In: Hooper NM, Lendeckel U (eds) Proteases in biology and disease, vol 4. Springer, USA, pp 85–121. doi:10.1007/0-387-25151-0_5

  • Shaver CM, Hauser AR (2004) Relative contributions of Pseudomonas aeruginosa ExoU, ExoS, and ExoT to virulence in the lung. Infect Immun 72:6969–6977. doi:10.1128/IAI.72.12.6969-6977.2004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE (1996) Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274:1859–1866

    Article  CAS  PubMed  Google Scholar 

  • Soong G, Parker D, Magargee M, Prince AS (2008) The type III toxins of Pseudomonas aeruginosa disrupt epithelial barrier function. J Bacteriol 190:2814–2821. doi:10.1128/JB.01567-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stryjewski M, Sexton DJ (2003) Pseudomonas aeruginosa infections in specific types of patients and clinical settings. In: Hauser A, Rello, J (eds) Severe infections caused by Pseudomonas aeruginosa. Kluwer Academic Publishers, Boston, pp 1–15. doi:10.1007/978-1-4613-0433-7

  • Sullivan AB, Tam KP, Metruccio MM, Evans DJ, Fleiszig SM (2015) The importance of the Pseudomonas aeruginosa type III secretion system in epithelium traversal depends upon conditions of host susceptibility. Infect Immun 83:1629–1640. doi:10.1128/IAI.02329-14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Torres JM, Cardenas O, Vasquez A, Schlossberg D (1998) Streptococcus pneumoniae bacteremia in a community hospital. Chest 113:387–390

    Article  CAS  PubMed  Google Scholar 

  • van den Boogaard FE, Brands X, Roelofs JJ, de Beer R, de Boer OJ, van ‘t Veer C, van der Poll T (2014) Mast cells impair host defense during murine Streptococcus pneumoniae pneumonia. J Infect Dis 210:1376–1384 doi:10.1093/infdis/jiu285

  • Wilke GA, Bubeck Wardenburg J (2010) Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus alpha-hemolysin-mediated cellular injury. Proc Natl Acad Sci USA 107:13473–13478. doi:10.1073/pnas.1001815107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu X, Weiss ID, Zhang HH, Singh SP, Wynn TA, Wilson MS, Farber JM (2014) Conventional NK cells can produce IL-22 and promote host defense in Klebsiella pneumoniae pneumonia. J Immunol 192:1778–1786. doi:10.4049/jimmunol.1300039

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao Y et al (2015) Thrombospondin-1 restrains neutrophil granule serine protease function and regulates the innate immune response during Klebsiella pneumoniae infection. Mucosal Immunol 8:896–905. doi:10.1038/mi.2014.120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan R. Hauser.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berube, B.J., Rangel, S.M. & Hauser, A.R. Pseudomonas aeruginosa: breaking down barriers. Curr Genet 62, 109–113 (2016). https://doi.org/10.1007/s00294-015-0522-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-015-0522-x

Keywords

Navigation