Albrecht AG, Netz DJA, Miethke M et al (2010) SufU is an essential iron-sulfur cluster scaffold protein in Bacillus subtilis. J Bacteriol 192:1643–1651. doi:10.1128/JB.01536-09
PubMed Central
Article
CAS
PubMed
Google Scholar
Bae T, Banger AK, Wallace A et al (2004) Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. Proc Natl Acad Sci U S A 101:12312–12317. doi:10.1073/pnas.0404728101
PubMed Central
Article
CAS
PubMed
Google Scholar
Chandrangsu P, Dusi R, Hamilton CJ, Helmann JD (2014) Methylglyoxal resistance in Bacillus subtilis: contributions of bacillithiol-dependent and independent pathways. Mol Microbiol 91:706–715. doi:10.1111/mmi.12489
PubMed Central
Article
CAS
PubMed
Google Scholar
Chaudhuri RR, Allen AG, Owen PJ et al (2009) Comprehensive identification of essential Staphylococcus aureus genes using transposon-mediated differential hybridisation (TMDH). BMC Genom 10:291. doi:10.1186/1471-2164-10-291
Article
Google Scholar
Chi BK, Roberts AA, Huyen TTT et al (2013) S-bacillithiolation protects conserved and essential proteins against hypochlorite stress in Firmicutes bacteria. Antioxid Redox Signal 18:1273–1295. doi:10.1089/ars.2012.4686
PubMed Central
Article
CAS
PubMed
Google Scholar
Ding H, Clark RJ (2004) Characterization of iron binding in IscA, an ancient iron-sulphur cluster assembly protein. Biochem J 379:433–440. doi:10.1042/BJ20031702
PubMed Central
Article
CAS
PubMed
Google Scholar
Ding H, Clark RJ, Ding B (2004) IscA mediates iron delivery for assembly of iron-sulfur clusters in IscU under the limited accessible free iron conditions. J Biol Chem 279:37499–37504. doi:10.1074/jbc.M404533200
Article
CAS
PubMed
Google Scholar
Fahey RC (2013) Glutathione analogs in prokaryotes. Biochim Biophys Acta 1830:3182–3198. doi:10.1016/j.bbagen.2012.10.006
Article
CAS
PubMed
Google Scholar
Fahey RC, Brown WC, Adams WB, Worsham MB (1978) Occurrence of glutathione in bacteria. J Bacteriol 133:1126–1129
PubMed Central
CAS
PubMed
Google Scholar
Fang Z, Dos Santos PC (2015) Protective role of bacillithiol in superoxide stress and Fe–S metabolism in Bacillus
subtilis. Microbiologyopen. doi:10.1002/mbo3.267
Google Scholar
Feng Y, Zhong N, Rouhier N et al (2006) Structural insight into poplar glutaredoxin C1 with a bridging iron-sulfur cluster at the active site. Biochemistry 45:7998–8008. doi:10.1021/bi060444t
Article
CAS
PubMed
Google Scholar
Fey PD, Endres JL, Yajjala VK et al (2013) A genetic resource for rapid and comprehensive phenotype screening of nonessential Staphylococcus aureus genes. mBio 4:e00537-12. doi:10.1128/mBio.00537-12
PubMed Central
Article
PubMed
Google Scholar
Gaballa A, Newton GL, Antelmann H et al (2010) Biosynthesis and functions of bacillithiol, a major low-molecular-weight thiol in Bacilli. Proc Natl Acad Sci U S A 107:6482–6486. doi:10.1073/pnas.1000928107
PubMed Central
Article
CAS
PubMed
Google Scholar
Gaballa A, Chi BK, Roberts AA et al (2013) Redox regulation in Bacillus subtilis: the bacilliredoxins BrxA (YphP) and BrxB (YqiW) function in de-bacillithiolation of S-bacillithiolated OhrR and MetE. Antioxid Redox Signal 21:357–367. doi:10.1089/ars.2013.5327
Article
Google Scholar
Gunther MR, Hanna PM, Mason RP, Cohen MS (1995) Hydroxyl radical formation from cuprous ion and hydrogen peroxide: a spin-trapping study. Arch Biochem Biophys 316:515–522. doi:10.1006/abbi.1995.1068
Article
CAS
PubMed
Google Scholar
Gutiérrez-Escobedo G, Orta-Zavalza E, Castaño I, De Las Peñas A (2013) Role of glutathione in the oxidative stress response in the fungal pathogen Candida
glabrata. Curr Genet 59:91–106. doi:10.1007/s00294-013-0390-1
Article
PubMed
Google Scholar
Handtke S, Schroeter R, Jürgen B et al (2014) Bacillus
pumilus reveals a remarkably high resistance to hydrogen peroxide provoked oxidative stress. PLoS One 9:e85625. doi:10.1371/journal.pone.0085625
PubMed Central
Article
PubMed
Google Scholar
Helbig K, Bleuel C, Krauss GJ, Nies DH (2008a) Glutathione and transition-metal homeostasis in Escherichia coli. J Bacteriol 190:5431–5438. doi:10.1128/JB.00271-08
PubMed Central
Article
CAS
PubMed
Google Scholar
Helbig K, Grosse C, Nies DH (2008b) Cadmium toxicity in glutathione mutants of Escherichia coli. J Bacteriol 190:5439–5454. doi:10.1128/JB.00272-08
PubMed Central
Article
CAS
PubMed
Google Scholar
Hood MI, Skaar EP (2012) Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol 10:525–537. doi:10.1038/nrmicro2836
Article
CAS
PubMed
Google Scholar
Inaoka T, Matsumura Y, Tsuchido T (1999) SodA and manganese are essential for resistance to oxidative stress in growing and sporulating cells of Bacillus
subtilis. J Bacteriol 181:1939–1943
PubMed Central
CAS
PubMed
Google Scholar
Jang S, Imlay JA (2007) Micromolar intracellular hydrogen peroxide disrupts metabolism by damaging iron-sulfur enzymes. J Biol Chem 282:929–937. doi:10.1074/jbc.M607646200
Article
CAS
PubMed
Google Scholar
Johnson MDL, Kehl-Fie TE, Klein R et al (2015) Role of copper efflux in pneumococcal pathogenesis and resistance to macrophage-mediated immune clearance. Infect Immun 83:1684–1694. doi:10.1128/IAI.03015-14
PubMed Central
Article
CAS
PubMed
Google Scholar
Landry AP, Cheng Z, Ding H (2013) Iron binding activity is essential for the function of IscA in iron-sulphur cluster biogenesis. Dalton Trans 42:3100–3106. doi:10.1039/c2dt32000b
PubMed Central
Article
CAS
PubMed
Google Scholar
Ma Z, Chandrangsu P, Helmann TC et al (2014) Bacillithiol is a major buffer of the labile zinc pool in Bacillus
subtilis. Mol Microbiol 94:756–770. doi:10.1111/mmi.12794
PubMed Central
Article
CAS
PubMed
Google Scholar
Macomber L, Imlay JA (2009) The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci U S A 106:8344–8349. doi:10.1073/pnas.0812808106
PubMed Central
Article
CAS
PubMed
Google Scholar
Macomber L, Rensing C, Imlay JA (2007) Intracellular copper does not catalyze the formation of oxidative DNA damage in Escherichia coli. J Bacteriol 189:1616–1626. doi:10.1128/JB.01357-06
PubMed Central
Article
CAS
PubMed
Google Scholar
Mapolelo DT, Zhang B, Naik SG et al (2012) Spectroscopic and functional characterization of iron-sulfur cluster-bound forms of Azotobacter
vinelandii (Nif)IscA. Biochemistry 51:8071–8084. doi:10.1021/bi3006658
PubMed Central
Article
CAS
PubMed
Google Scholar
Mashruwala AA, Pang YY, Rosario-Cruz Z et al (2015) Nfu facilitates the maturation of iron-sulfur proteins and participates in virulence in Staphylococcus
aureus. Mol Microbiol 95:383–409. doi:10.1111/mmi.12860
Article
CAS
PubMed
Google Scholar
Masip L, Veeravalli K, Georgiou G (2006) The many faces of glutathione in bacteria. Antioxid Redox Signal 8:753–762. doi:10.1089/ars.2006.8.753
Article
CAS
PubMed
Google Scholar
Newton GL, Buchmeier N, Fahey RC (2008) Biosynthesis and functions of mycothiol, the unique protective thiol of Actinobacteria. Microbiol Mol Biol Rev 72:471–494. doi:10.1128/MMBR.00008-08
PubMed Central
Article
CAS
PubMed
Google Scholar
Newton GL, Rawat M, La Clair JJ et al (2009) Bacillithiol is an antioxidant thiol produced in Bacilli. Nat Chem Biol 5:625–627. doi:10.1038/nchembio.189
PubMed Central
Article
CAS
PubMed
Google Scholar
Newton GL, Fahey RC, Rawat M (2012) Detoxification of toxins by bacillithiol in Staphylococcus aureus. Microbiology 158:1117–1126. doi:10.1099/mic.0.055715-0
PubMed Central
Article
CAS
PubMed
Google Scholar
Posada AC, Kolar SL, Dusi RG et al (2014) The importance of bacillithiol in the oxidative stress response of Staphylococcus aureus. Infect Immun 82:316–332. doi:10.1128/IAI.01074-13
PubMed Central
Article
PubMed
Google Scholar
Pöther D-C, Gierok P, Harms M et al (2013) Distribution and infection-related functions of bacillithiol in Staphylococcus aureus. Int J Med Microbiol 303:114–123. doi:10.1016/j.ijmm.2013.01.003
Article
PubMed
Google Scholar
Potter AJ, Trappetti C, Paton JC (2012) Streptococcus pneumoniae uses glutathione to defend against oxidative stress and metal ion toxicity. J Bacteriol 194:6248–6254. doi:10.1128/JB.01393-12
PubMed Central
Article
CAS
PubMed
Google Scholar
Qi W, Li J, Chain CY et al (2012) Glutathione complexed Fe–S centers. J Am Chem Soc 134:10745–10748. doi:10.1021/ja302186j
PubMed Central
Article
CAS
PubMed
Google Scholar
Rajkarnikar A, Strankman A, Duran S et al (2013) Analysis of mutants disrupted in bacillithiol metabolism in Staphylococcus
aureus. Biochem Biophys 436:128–133. doi:10.1016/j.bbrc.2013.04.027
Article
CAS
Google Scholar
Roberts AA, Sharma SV, Strankman A et al (2013) Mechanistic studies of FosB: a divalent-metal-dependent bacillithiol-S-transferase that mediates fosfomycin resistance in Staphylococcus aureus. Biochem J 451:69–79
PubMed Central
Article
CAS
PubMed
Google Scholar
Rosario-Cruz Z, Chahal HK, Mike LA et al (2015) Bacillithiol has a role in Fe–S cluster biogenesis in Staphylococcus
aureus. Mol Microbiol. doi:10.1111/mmi.13115
Google Scholar
Sharma SV, Arbach M, Roberts AA et al (2013) Biophysical features of bacillithiol, the glutathione surrogate of Bacillus subtilis and other Firmicutes. ChemBioChem 14:2160–2168. doi:10.1002/cbic.201300404
PubMed Central
Article
CAS
PubMed
Google Scholar
Sobota JM, Imlay JA (2011) Iron enzyme ribulose-5-phosphate 3-epimerase in Escherichia
coli is rapidly damaged by hydrogen peroxide but can be protected by manganese. Proc Natl Acad Sci U S A 108:5402–5407. doi:10.1073/pnas.1100410108
PubMed Central
Article
CAS
PubMed
Google Scholar
Tuchscherr L, Löffler B (2015) Staphylococcus
aureus dynamically adapts global regulators and virulence factor expression in the course from acute to chronic infection. Curr Genet. doi:10.1007/s00294-015-0503-0
PubMed
Google Scholar
Valentino MD, Foulston L, Sadaka A, et al. (2014) Genes contributing to Staphylococcus
aureus fitness
in abscess- and infection-related ecologies. mBio 5:e01729–14. doi: 10.1128/mBio.01729-14
PubMed Central
Article
PubMed
Google Scholar
Vinella D, Brochier-Armanet C, Loiseau L et al (2009) Iron-sulfur (Fe/S) protein biogenesis: phylogenomic and genetic studies of A-type carriers. PLoS Genet 5:e1000497. doi:10.1371/journal.pgen.1000497
PubMed Central
Article
PubMed
Google Scholar