Skip to main content
Log in

Serine hydroxymethyltransferase: a key player connecting purine, folate and methionine metabolism in Saccharomyces cerevisiae

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Previous genetic analyses showed phenotypic interactions between 5-amino-4-imidazole carboxamide ribonucleotide 5′-phosphate (AICAR) produced from the purine and histidine pathways and methionine biosynthesis. Here, we revisited the effect of AICAR on methionine requirement due to AICAR accumulation in the presence of the fau1 mutation invalidating folinic acid remobilization. We found that this methionine auxotrophy could be suppressed by overexpression of the methionine synthase Met6 or by deletion of the serine hydroxymethyltransferase gene SHM2. We propose that in a fau1 background, AICAR, by stimulating the transcriptional expression of SHM2, leads to a folinic acid accumulation inhibiting methionine synthesis by Met6. In addition, we uncovered a new methionine auxotrophy for the ade3 bas1 double mutant that can be rescued by overexpressing the SHM2 gene. We propose that methionine auxotrophy in this mutant is the result of a competition for 5,10-methylenetetrahydrofolate between methionine and deoxythymidine monophosphate synthesis. Altogether, our data show intricate genetic interactions between one-carbon units, purine and methionine metabolism through fine-tuning of serine hydroxymethyltransferase by AICAR and the transcription factor Bas1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ceschin J, Saint-Marc C, Laporte J, Labriet A, Philippe C, Moenner M, Daignan-Fornier B, Pinson B (2014) Identification of yeast and human 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAr) transporters. J Biol Chem 289:16844–16854

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Corton JM, Gillespie JG, Hawley SA, Hardie DG (1995) 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem 229:558–565

    Article  CAS  PubMed  Google Scholar 

  • Daignan-Fornier B, Fink GR (1992) Coregulation of purine and histidine biosynthesis by the transcriptional activators BAS1 and BAS2. Proc Natl Acad Sci 89:6746–6750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Daignan-Fornier B, Pinson B (2012) 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl 5′-Monophosphate (AICAR), a highly conserved purine intermediate with multiple effects. Metabolites 2:292–302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Denis V, Daignan-Fornier B (1998) Synthesis of glutamine, glycine and 10-formyl tetrahydrofolate is coregulated with purine biosynthesis in Saccharomyces cerevisiae. Mol Gen Genet 259:246–255

    Article  CAS  PubMed  Google Scholar 

  • Denis V, Boucherie H, Monribot C, Daignan-Fornier B (1998) Role of the myb-like protein bas1p in Saccharomyces cerevisiae: a proteome analysis. Mol Microbiol 30:557–566

    Article  CAS  PubMed  Google Scholar 

  • Gari E, Piedrafita L, Aldea M, Herrero E (1997) A set of vectors with a tetracycline-regulatable promoter system for modulated gene expression in Saccharomyces cerevisiae. Yeast 13:837–848

    Article  CAS  PubMed  Google Scholar 

  • Holmes WB, Appling DR (2002) Cloning and characterization of methenyltetrahydrofolate synthetase from Saccharomyces cerevisiae. J Biol Chem 277:20205–20213

    Article  CAS  PubMed  Google Scholar 

  • Hurlimann HC, Laloo B, Simon-Kayser B, Saint-Marc C, Coulpier F, Lemoine S, Daignan-Fornier B, Pinson B (2011) Physiological and toxic effects of purine intermediate 5-amino-4-imidazolecarboxamide ribonucleotide (AICAR) in yeast. J Biol Chem 286:30994–31002

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim PB, Nelson JW, Breaker RR (2015) An ancient riboswitch class in bacteria regulates purine biosynthesis and one-carbon metabolism. Mol Cell 57:317–328

    Article  CAS  PubMed  Google Scholar 

  • Liu X et al (2014) Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK. Proc Natl Acad Sci 111:E435–E444

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marie S, Heron B, Bitoun P, Timmerman T, Van Den Berghe G, Vincent MF (2004) AICA-ribosiduria: a novel, neurologically devastating inborn error of purine biosynthesis caused by mutation of ATIC. Am J Hum Genet 74:1276–1281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Narkar VA et al (2008) AMPK and PPARdelta agonists are exercise mimetics. Cell 134:405–415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pinson B, Merle M, Franconi JM, Daignan-Fornier B (2004) Low affinity orthophosphate carriers regulate PHO gene expression independently of internal orthophosphate concentration in Saccharomyces cerevisiae. J Biol Chem 279:35273–35280

    Article  CAS  PubMed  Google Scholar 

  • Pinson B, Vaur S, Sagot I, Coulpier F, Lemoine S, Daignan-Fornier B (2009) Metabolic intermediates selectively stimulate transcription factor interaction and modulate phosphate and purine pathways. Genes Dev 23:1399–1407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rattan R, Giri S, Singh AK, Singh I (2005) 5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside inhibits cancer cell proliferation in vitro and in vivo via AMP-activated protein kinase. J Biol Chem 280:39582–39593

    Article  CAS  PubMed  Google Scholar 

  • Rebora K, Laloo B, Daignan-Fornier B (2005) Revisiting purine-histidine cross-pathway regulation in Saccharomyces cerevisiae: a central role for a small molecule. Genetics 170:61–70

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Servant G et al (2012) Tye7 regulates yeast Ty1 retrotransposon sense and antisense transcription in response to adenylic nucleotides stress. Nucleic Acids Res 40:5271–5282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stover P, Schirch V (1990) Serine hydroxymethyltransferase catalyzes the hydrolysis of 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate. J Biol Chem 265:14227–14233

    CAS  PubMed  Google Scholar 

  • Subramanian M, Qiao WB, Khanam N, Wilkins O, Der SD, Lalich JD, Bognar AL (2005) Transcriptional regulation of the one-carbon metabolism regulon in Saccharomyces cerevisiae by Bas1p. Mol Microbiol 57:53–69

    Article  CAS  PubMed  Google Scholar 

  • Sullivan JE, Carey F, Carling D, Beri RK (1994) Characterisation of 5′-AMP-activated protein kinase in human liver using specific peptide substrates and the effects of 5′-AMP analogues on enzyme activity. Biochem Biophys Res Commun 200:1551–1556

    Article  CAS  PubMed  Google Scholar 

  • Tibbetts AS, Appling DR (2000) Characterization of two 5-aminoimidazole-4-carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase isozymes from Saccharomyces cerevisiae. J Biol Chem 275:20920–20927

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr F. Lacroute for the gift of the genomic library. H-C. H. was supported by a fellowship from Ligue Nationale contre le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertrand Daignan-Fornier.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saint-Marc, C., Hürlimann, H.C., Daignan-Fornier, B. et al. Serine hydroxymethyltransferase: a key player connecting purine, folate and methionine metabolism in Saccharomyces cerevisiae . Curr Genet 61, 633–640 (2015). https://doi.org/10.1007/s00294-015-0489-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-015-0489-7

Keywords

Navigation