Skip to main content
Log in

Molecular and physiological effects of environmental UV radiation on fungal conidia

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Conidia are specialized structures produced at the end of the asexual life cycle of most filamentous fungi. They are responsible for fungal dispersal and environmental persistence. In pathogenic species, they are also involved in host recognition and infection. Conidial production, survival, dispersal, germination, pathogenicity and virulence can be strongly influenced by exposure to solar radiation, although its effects are diverse and often species dependent. UV radiation is the most harmful and mutagenic waveband of the solar spectrum. Direct exposure to solar radiation for a few hours can kill conidia of most fungal species. Conidia are killed both by solar UV-A and UV-B radiation. In addition to killing conidia, which limits the size of the fungal population and its dispersion, exposures to sublethal doses of UV radiation can reduce conidial germination speed and virulence. The focus of this review is to provide an overview of the effects of solar radiation on conidia and on the major systems involved in protection from and repair of damage induced by solar UV radiation. The efforts that have been made to obtain strains of fungi of interest such as entomopathogens more tolerant to solar radiation will also be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adams TH, Wieser JK, Yu J-H (1998) Asexual sporulation in Aspergillus nidulans. Microbiol Mol Biol Rev 62:35–54

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alejandre-Durán E, Roldán-Arjona T, Ariza RR, Ruiz-Rubio M (2003) The photolyase gene from the plant pathogen Fusarium oxysporum f. sp. lycopersici is induced by visible light and α-tomatine from tomato plant. Fungal Gen Biol 40:159–165

    Google Scholar 

  • Al-Rubeai MA, El-Hassi MF (1986) Inactivation of wild type and mutant Aspergillus nidulans by far-UV, near-UV, visible and sun lights. Environ Exp Bot 26:243–252

    Google Scholar 

  • Alves SB, Risco SH, Almeida LC (1984) Influence of photoperiod and temperature on the development and sporulation of Metarhizium anisopliae (Metsch.) Sorok. Z Ang Ent 97:127–129

    Google Scholar 

  • Alves RT, Bateman RP, Prior C, Leather SR (1998) Effects of simulated solar radiation on conidial germination of Metarhizium anisopliae in different formulation. Crop Prot 17:675–679

    CAS  Google Scholar 

  • Aphalo PJ, Albert A, Björn LO, McLeod A, Robson TM, Rosenqvist E (2012) Beyond the visible: a handbook of best practice in plant UV photobiology. In: COST Action FA0906 UV4growth, University of Helsinki, Department of Biosciences, Division of Plant Biology, Helsinki, Finland, pp 176. http://helda.helsinki.fi/handle/10138/37558

  • Avalos J, Estrada AF (2010) Regulation by light in Fusarium. Fungal Genet Biol 47:930–938

    CAS  PubMed  Google Scholar 

  • Avalos J, Limón MC (2015) Biological roles of fungal carotenoids. Curr Genet. doi:10.1007/s00294-014-0454-x

  • Avalos J, Bejarano ER, Cerdá-Olmedo E (1993) Photoinduction of carotenoid biosynthesis. Methods Enzymol 214:283–294

    CAS  Google Scholar 

  • Avalos J, Díaz-Sánchez V, García-Martínez J, Castrillo M, Ruger-Herreros M, Limón MC (2014) Corotenoids. In: Martín JF, García-Estrada C, Zeilinger S (eds) Biosynthesis and molecular genetics of fungal secondary metabolites. Springer, New York, pp 149–185

    Google Scholar 

  • Aylor DE, Sanogo S (1997) Germinability of Venturia inaequalis conidia exposed to sunlight. Phytopathology 87:628–633

    CAS  PubMed  Google Scholar 

  • Bais AF, McKenzie RL, Bernhard G, Aucamp PJ, Ilyas M, Madronich S, Tourpali K (2015) Ozone depletion and climate change: impacts on UV radiation. Photochem Photobiol Sci 14:19–52

    CAS  PubMed  Google Scholar 

  • Baker TI, Radloff RJ, Cords CE, Engel SR, Mitchell DL (1991) The induction and repair of (6-4) photoproducts in Neurospora crassa. Mutation Res 255:211–218

    CAS  PubMed  Google Scholar 

  • Balskus EP, Walsh CT (2010) The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria. Science 329:1653–1656

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bandaranayake WM (1998) Mycosporines: are they nature’s sunscreens? Nat Prod Rep 1998:159–172

    Google Scholar 

  • Banyasz A, Vayá I, Changenet-Barret P, Gustavsson T, Douki T, Markovitsi D (2011) Base pairing enhances fluorescence and favors cyclobutane dimer formation induced upon absorption of UVA radiation by DNA. J Am Chem Soc 133:5163–5165

    CAS  PubMed  Google Scholar 

  • Barros BHR, da Silva SH, Marques ER, Rosa JC, Yatsuda AP, Roberts DW, Braga GUL (2010) A proteomic approach to identifying proteins differentially expressed in conidia and mycelium of the entomopathogenic fungus Metarhizium anisopliae. Fungal Biol 114:572–579

    CAS  PubMed  Google Scholar 

  • Bayram Ö, Biesemann C, Krappmann S, Galland P, Braus GH (2008) More than a repair enzyme: A spergillus nidulans photolyase-like CryA is a regulator of sexual development. Mol Biol Cell 19:3254–3262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernillon J, Bouillant M-L, Pittet J-L, Favre-Bovin J, Arpin N (1984) Mycosporine glutamine and related mycosporines in the fungus Pyronema omphalodes. Phytochemistrty 23:1083–1087

    CAS  Google Scholar 

  • Berrocal-Tito GM, Esquivel-Naranjo EU, Horwitz BA, Herrera-Estrela A (2007) Trichoderma atroviride PHR1, a fungal photolyase responsible for DNA repair, autoregulates its own photoinduction. Eukaryot Cell 6:1682–1692

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bidochka MJ, Kamp AM, Lavender TM, De koning J, De Croos JNA (2001) Habitat association in two genetic groups of the insect-pathogenic fungus Metarhizium anisopliae: uncovering cryptic species? Appl Environm Microbiol 67:1335–1342

    CAS  Google Scholar 

  • Blanc PL, Tuveson RW, Sargent ML (1976) Inactivation of carotenoid-producing and albino strains of Neurospora crassa by visible light, blacklight, and ultraviolet radiation. J Bacteriol 125:616–625

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bluhm BH, Dunkle LD (2008) PHL1 of Cercospora zeae-maydis encodes a member of the photolyase/cryptochrome family involved in UV protection and fungal development. Fungal Gen Biol 45:1364–1372

    CAS  Google Scholar 

  • Bonnen A, Brambl R (1983) Germination physiology of Neurospora crassa conidia. Exper Mycol 7:197–207

    CAS  Google Scholar 

  • Bouillant M-L, Pittet J-L, Bernillon J, Favre-Bonvin J, Arpin N (1981) Mycosporins from Ascochyta pisi, Cladosporium herbarum and Septoria nodorum. Phytochemistry 20:2705–2707

    CAS  Google Scholar 

  • Braga GUL, Destéfano RHR, Messias CL (1999) Oxygen consumption by Metarhizium anisopliae during germination and growth on different carbon sources. J Invertebr Pathol 74:112–119

    CAS  PubMed  Google Scholar 

  • Braga GUL, Flint SD, Messias CL, Anderson AJ, Roberts DW (2001a) Effects of uv-B on conidia and germlings of the entomopathogenic hyphomycete Metarhizium anisopliae. Mycol Res 105:874–882

    Google Scholar 

  • Braga GUL, Flint SD, Messias CL, Anderson AJ, Roberts DW (2001b) Effects of UVB irradiance on conidia and germinants of the entomopathogenic hyphomycete Metarhizium anisopliae: a study of reciprocity and recovery. Photochem Photobiol 73:140–146

    CAS  PubMed  Google Scholar 

  • Braga GUL, Flint SD, Miller CD, Anderson AJ, Roberts DW (2001c) Variability in response to UV-B among species and strains of Metarhizium isolated from sites at latitudes from 61°N to 54°S. J Invertebr Pathol 78:98–108

    CAS  PubMed  Google Scholar 

  • Braga GUL, Flint SD, Miller CD, Anderson AJ, Roberts DW (2001d) Both solar UVA and UVB radiation impair conidial culturability and delay germination in the entomopathogenic fungus Metarhizium anisopliae. Photochem Photobiol 74:734–739

    CAS  PubMed  Google Scholar 

  • Braga GUL, Rangel DEN, Flint SD, Miller CD, Anderson AJ, Roberts DW (2002) Damage and recovery from UV-B exposure in conidia of the entomopathogens Verticillium lecanii and Aphanocladium album. Mycologia 94:912–920

    PubMed  Google Scholar 

  • Braga GUL, Rangel DEN, Flint SD, Anderson AJ, Roberts DW (2006) Conidial pigmentation is important to tolerance against solar-simulated radiation in the entomopathogenic fungus Metarhizium anisopliae. Photochem Photobiol 82:418–422

    CAS  PubMed  Google Scholar 

  • Butler MJ, Day AW (1998) Fungal melanins: a review. Can J Microbiol 44:1115–1136

    CAS  Google Scholar 

  • Butler MJ, Day AW, Henson JM, Money NP (2001) Pathogenic properties of fungal melanins. Mycologia 93:1–8

    CAS  Google Scholar 

  • Cadet J, Mouret S, Ravanat J-L, Douki T (2012) Photoinduced damage to cellular DNA: direct and photosensitized reactions. Photochem Photobiol 88:1048–1065

    CAS  PubMed  Google Scholar 

  • Cadet J, Douki T, Ravanat J-L (2015) Oxidatively generated damage to cellular DNA by UVB and UVA radiation. Photochem Photobiol 91:140–155

    CAS  PubMed  Google Scholar 

  • Caesar AJ, Pearson RC (1983) Environmental factors affecting survival of ascospores of Sclerotinia sclerotiorum. Phytopathology 73:1024–1030

    Google Scholar 

  • Caldwell MM, Flint SD (1997) Uses of biological spectral weighting functions and the need of scaling for the ozone reduction problem. Plant Ecol 128:66–76

    Google Scholar 

  • Caldwell MM, Bornman JF, Ballaré CL, Flint SD, Kulandaivelu G (2007) Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Photochem Photobiol Sci 6:252–266

    CAS  PubMed  Google Scholar 

  • Calvo AM, Wilson RA, Bok JW, Keller NP (2002) Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 66:447–459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carollo CA, Calil ALA, Schiave LA, Guaratini T, Roberts DW, Lopes NP, Braga GUL (2010) Fungal tyrosine betaine, a novel secondary metabolite from conidia of entomopathogenic Metarhizium spp. fungi. Fungal Biol. 114:473–480

    CAS  PubMed  Google Scholar 

  • Chelico L, Khachatourians GG (2008) Isolation and characterization of nucleotide excision repair deficient mutants of the entomopathogenic fungus, Beauveria bassiana. J Invertebr Pathol 98:93–100

    CAS  PubMed  Google Scholar 

  • Chelico L, Haughian JL, Woytowich AE, Khachatourians GG (2005) Quantification of ultraviolet-C irradiation induced cyclobutane pyrimidine dimers and their removal in Beauveria bassiana conidiospore DNA. Mycologia 97:621–627

    CAS  PubMed  Google Scholar 

  • Chelico L, Haughian JL, Khachatourians GG (2006) Nucleotide excision repair and photoreactivation in the entomopathogenic fungi Beauveria bassiana, B. brongniartii, B. nivea, Metarhizium anisopliae, Paecilomyces farinosus, and Verticillium lecanii. J Appl Microbiol 100:964–972

    CAS  PubMed  Google Scholar 

  • Chen Y, Feng P, Shang Y, Xu Y-J, Wang C (2015) Biosynthesis of non-melanin pigment by a divergent polyketide synthase in Metarhizium robertsii. Fungal Gen Biol. doi:10.1016/j.fgb.2014.10.018

  • Cheng P, Ma Z, Wang X, Wang C, Li Y, Wang S, Wang H (2014) Impact of UV-B radiation on aspects of germination and epidemiological components of three major physiological races of Puccinia striiformis f. sp. tritici. Crop Prot 65:6–14

    Google Scholar 

  • Christiaens F, Moyal D, Seité S, Frederick J (2011) Comments to the article by Kollias, Ruvolo and Sayre entitled “the value of the ratio of UVA to UVB in sunlight”. Photochem Photobiol 87:1476–1477

    CAS  PubMed  Google Scholar 

  • Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40:17204

    Google Scholar 

  • Claverie-Martin F, Diaz-Torres M, Geoghegan MJ (1988) Chemical composition and ultrastructure of wild-type and white mutant Aspergillus nidulans conidial walls. Curr Microbiol 16:281–287

    CAS  Google Scholar 

  • Coblentz WW (1932) The Copenhagen meeting of the second international congress on light. Science 76:412–415

    CAS  PubMed  Google Scholar 

  • Conde FR, Churio MS, Previtali CM (2004) The deactivation pathways of the excited-states of the mycosporine-like amino acids shinorine and porphyra-334 in aqueous solution. Photochem Photobiol Sci 3:960–967

    CAS  PubMed  Google Scholar 

  • Conde FR, Churio MS, Previtali CM (2007) Experimental study of the excited-state properties and photostability of the mycosporine-like amino acid palythine in aqueous solution. Photochem Photobiol Sci 6:669–674

    CAS  PubMed  Google Scholar 

  • Cooper B, Garret WM, Campbell KB (2006) Shotgun identification of proteins from uredospores of the bean rust Uromyces appendiculatus. Proteomics 6:2477–2484

    CAS  PubMed  Google Scholar 

  • Corrochano LM, Garre V (2010) Photobiology in the Zygomycota: multiple photoreceptor genes for complex responses to light. Fungal Genet Biol 47:893–899

    CAS  PubMed  Google Scholar 

  • Costa LB, Rangel DEN, Morandi MAB, Bettiol W (2012) Impact of UV-B radiation on Clonostachys rosea germination and growth. World J Microbiol Biotechnol 28:2497–2504

    CAS  PubMed  Google Scholar 

  • d’Enfert C (1997) Fungal spore germination: insights from the molecular genetics of Aspergillus nidulans and Neurospora crassa. Fungal Genet Biol 21:163–172

    Google Scholar 

  • Dadachova E, Bryan RA, Howell RC, Schweitzer AD, Aisen P, Nosanchuk JD, Casadevall A (2008) The radioprotective properties of fungal melanin are a function of its chemical composition, stable radical presence and spatial arrangement. Pigment Cell Melanoma Res 21:192–199

    CAS  PubMed  Google Scholar 

  • Dardalhon D, Angelin AR, Baldacci G, Sage E, Francesconi S (2008) Unconventional effects of UVA radiation on cell cycle progression in S. pombe. Cell Cycle 7:611–622

    CAS  PubMed  Google Scholar 

  • de Menezes HD, Pereira AC, Brancini GTP, de Leão HC, Massola NS Jr, Bachmann L, Wainwright M, Bastos JK, Braga GUL (2014a) Furocoumarins and coumarins photoinactivate Colletotrichum acutatum and Aspergillus nidulans fungi under solar radiation. J Photochem Photobiol B 131:74–83

    PubMed  Google Scholar 

  • de Menezes HD, Rodrigues GB, Teixeira SP, Massola NS Jr, Bachmann L, Wainwright M, Braga GUL (2014b) In vitro photodynamic inactivation of plant-pathogenic fungi Colletotrichum acutatum and Colletotrichum gloeosporioides with novel phenothiazinium photosensitizers. Appl Environ Microbiol 80:1623–1632

    PubMed  PubMed Central  Google Scholar 

  • de Menezes HD, Massola NS Jr, Flint SD, da Silva Jr GJ, Bachmann L, Rangel DEN, Braga GUL (2015) Growth under visible light increases conidia and mucilage production and tolerance to UV-B radiation in the plant-pathogenic fungus Colletotrichum acutatum. Photochem Photobiol 91:397–402

    PubMed  Google Scholar 

  • Diffey B (2015) Solar spectral irradiance and summary outputs using Excel. Photochem Photobiol doi:10.1111/php.12422

  • Douki T, Reynaud-Angelin A, Cadet J, Sage E (2003) Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation. Biochemistry 42:9221–9226

    CAS  PubMed  Google Scholar 

  • Ehrlich KC, Wei Q, Bhatnagar D (2010) Increased sensitivity of Aspergillus flavus and Aspergillus parasiticus aflatoxin biosynthesis polyketide synthase mutants to UVB light. Word Mycotoxin J 3:263–270

    CAS  Google Scholar 

  • Eisenman HC, Casadevall A (2012) Synthesis and assembly of fungal melanin. Appl Microbiol Biotechnol 93:931–940

    CAS  PubMed  PubMed Central  Google Scholar 

  • Englander L, Browning M, Tooley PW (2006) Growth and sporulation of Phytophthora ramorum in vitro in response to temperature and light. Mycologia 98:365–373

    PubMed  Google Scholar 

  • Esbelin J, Mallea S, Ram AFJ, Carlin F (2013) Role of pigmentation in protecting Aspergillus niger conidiospores against pulsed light radiation. Photochem Photobiol 89:758–761

    CAS  PubMed  Google Scholar 

  • Fang W, St. Leger RJ (2012) Enhanced UV resistance and improved killing of malaria mosquitoes by photolyase transgenic entomopathogenic fungi. PLoS ONE 7:e43069

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fang W, Fernandes ÉKK, Roberts DW, Bidochka MJ, St. Leger RJ (2010) A laccase exclusively expressed by Metarhizium anisopliae during isotropic growth is involved in pigmentation, tolerance to abiotic stresses and virulence. Fungal Genet Biol 47:602–607

    CAS  PubMed  Google Scholar 

  • Fargues J, Goettel MS, Smits N, Ouedraogo A, Vidal C, Lacey LA, Lomer CJ, Rougier M (1996) Variability in susceptibility to simulated sunlight of conidia among isolates of entomopathogenic Hyphomycetes. Mycopathologia 135:171–181

    CAS  PubMed  Google Scholar 

  • Fargues J, Rougier M, Goujet R, Smits N, Coustere C, Itier B (1997) Inactivation of conidia of Paecilomyces fumosoroseus by near-ultraviolet (UVB and UVA) and visible radiation. J Invertebr Pathol 69:70–78

    CAS  PubMed  Google Scholar 

  • Favre-Bonvin J, Arpin N, Brevard C (1976) Structure de la mycosporine (P310)1. Can J Chem 54:1105–1113

    CAS  Google Scholar 

  • Favre-Bonvin J, Bernillon J, Salin N, Arpin N (1987) Biosynthesis of mycosporines: mycosporine glutaminol in Trichotecium roseum. Phytochemistry 26:2509–2514

    CAS  Google Scholar 

  • Fayret J, Bernillon J, Bouillant M-L, Favre-Bonvin J (1981) Open and ring forms of mycosporin-2 from the ascomycete Gnomonia leptostyla. Phytochemistry 20:2709–2710

    CAS  Google Scholar 

  • Fernandes ÉKK, Rangel DEN, Moraes AML, Bittencourt VREP, Roberts DW (2007) Variability in tolerance to UV-B radiation among Beauveria spp. isolates. J Invertebr Pathol 96:237–243

    CAS  PubMed  Google Scholar 

  • Fernando THPS, Jayasinghe CK, Wijesundera RLC (2000) Factors affecting spore production, germination and viability of Colletotrichum acutatum isolates from Hevea brasiliensis. Mycol Res 104:681–685

    Google Scholar 

  • Flint SD, Caldwell MM (2003) Field testing of UV biological spectral weighting functions for higher plants. Physiol Plant 117:137–144

    CAS  Google Scholar 

  • Fourtouni A, Manetas Y, Christias C (1998) Effects of UV-B radiation on growth, pigmentation, and spore production in the phytopathogenic fungus Alternaria solani. Can J Bot 76:2093–2099

    CAS  Google Scholar 

  • Fuller KK, Ringelberg CS, Loros JJ, Dunlap JC (2013) The fungal pathogen Aspergillus fumigatus regulates growth, metabolism, and stress resistance in response to light. MBio 4:e00142–13

  • Fuller KK, Loros JJ, Dunlap JC (2015) Fungal photobiology: visible light as a signal for stress, space and time. Curr Genet. doi:10.1007/s00294-014-0451

  • Gao Q, Garcia-Pichel F (2011) Microbial ultraviolet sunscreens. Nature Rev Microbiol 9:791–802

    CAS  Google Scholar 

  • Goldman GH, Kafer E (2004) Aspergillus nidulans as a model system to characterize the DNA damage response in eukaryotes. Fungal Genet Biol 41:428–442

    CAS  PubMed  Google Scholar 

  • Goldman GH, McGuire SL, Harris SD (2002) The DNA damage response in filamentous fungi. Fungal Genet Biol 35:183–195

    CAS  PubMed  Google Scholar 

  • Gonçalves RCR, Pombeiro-Sponchiado SR (2005) Antioxidant activity of the melanin pigment extracted from Aspergillus nidulans. Biol Pharm Bull 28:1129–1131

    Google Scholar 

  • Gonzales FP, da Silva SH, Roberts DW, Braga GUL (2010) Photodynamic inactivation of conidia of the fungi Metarhizium anisopliae and Aspergillus nidulans with methylene blue and toluidine blue. Photochem Photobiol 86:653–661

    CAS  PubMed  Google Scholar 

  • Gorbushina AA, Whitehead K, Dornieden T, Niesse A, Schulte A, Hedges JI (2003) Black fungal colonies as units of survival: hyphal mycosporines synthesized by rock-dwelling microcolonial fungi. Can J Bot 81:131–138

    CAS  Google Scholar 

  • Hammerschmidt R, Nicholson RL (1977) Resistance of maize to anthracnose: effect of light intensity on lesion development. Phytopathology 67:247–250

    Google Scholar 

  • Hedimbi M, Kaaya GP, Singh S, Chimwamurombe PM, Gindin G, Glazer I, Samish M (2008) Protection of Metarhizium anisopliae conidia from ultra-violet radiation and their pathogenicity to Rhipicephalus evertsi evertsi ticks. Exp Appl Acarol 46:149–156

    CAS  PubMed  Google Scholar 

  • Henson J, Butler MJ, Day AW (1999) The dark side of the mycelium: melanins of phytopathogenic fungi. Annu Rev Phytopathol 37:447–471

    CAS  PubMed  Google Scholar 

  • Honda Y, Yunoki T (1978) Action spectrum for photomorphogenesis in Botrytis cinerea Pers. ex Fr. Plant Physiol 61:711–713

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huarte-Bonnet C, Juárez MP, Pedrini N (2015) Oxidative stress in entomopathogenic fungi grown on insect-like hydrocarbons. Curr Genet. doi:10.1007/s00294-014-0452-z

  • Idnurm A (2013) Light sensing in Aspergillus fumigatus highlights the case for establishing new models for fungal photobiology. MBio 4:e00260–13

  • Idnurm A, Verma S, Corrochano LM (2010) A glimpse into the basis of vision in kingdom Mycota. Fungal Genet Biol 47:881–892

    PubMed  PubMed Central  Google Scholar 

  • Ignoffo CM, Garcia C (1992) Influence of conidial color on inactivation of several entomogenous fungi (hyphomycetes) by simulated sunlight. Environ Entomol 21:913–917

    Google Scholar 

  • Jamieson DJ (1998) Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 14:1511–1527

    CAS  PubMed  Google Scholar 

  • Jørgensen TR, Park J, Arentshorst M, van Welzen AM, Lamers G, vanKuyk PA, Damveld RA, van den Hondel CAM, Nielsen KF, Frisvad JC, Ram AFJ (2011) The molecular and genetic basis of conidial pigmentation in Aspergillus niger. Fungal Gen Biol 48:544–553

    Google Scholar 

  • Kamileri I, Karakasilioti I, Garinis GA (2012) Nucleotide excision repair: new tricks with old bricks. Trends Genet 28:566–573

    CAS  PubMed  Google Scholar 

  • Karentz D (2015) Beyond xeroderma pigmentosum: DNA damage and repair in an ecological context. A tribute to James E Cleaver. Photochem Photobiol 91:460–474

    CAS  PubMed  Google Scholar 

  • Keller N (2011) The fungal treasure chest: spore origins? Fungal Biol Rev 25:73–77

    Google Scholar 

  • Kielbassa C, Roza L, Epe B (1997) Wavelenght dependence of oxidative DNA damage induced by UV and visible light. Carcinogenesis 18:811–816

    CAS  PubMed  Google Scholar 

  • Kihara J, Moriwaki A, Ito M, Arase S, Honda Y (2004a) Expression of THR1, a 1,3,8-trihydroxynaphthanene reductase gene involved in melanin biosynthesis in the phytopathogenic fungus Bipolaris oryzae, is enhanced by near-ultraviolet radiation. Pigment Cell Res 17:15–23

    CAS  PubMed  Google Scholar 

  • Kihara J, Moriwaki A, Ueno M, Tokunaga T, Arase S, Honda Y (2004b) Cloning, functional analysis and expression of a scytalone dehydratase gene (SCD1) involved in melanin biosynthesis of the phytopathogenic fungus Bipolaris oryzae. Curr Gen 45:197–204

    CAS  Google Scholar 

  • Kihara J, Moriwaki A, Tanaka N, Tanaka C, Ueno M, Arase S (2008) Characterization of the BMR1 gene encoding a transcription factor for melanin biosynthesis genes in the phytopathogenic fungus Bipolaris oryzae. FEMS Microbiol 281:221–227

    CAS  Google Scholar 

  • Kneuttinger AC, Kashiwazaki G, Prill S, Heil K, Müller M, Carell T (2014) Formation and direct repair of UV-induced dimeric DNA pyrimidine lesions. Photochem Photobiol 90:1–14

    CAS  Google Scholar 

  • Krizek DT, Clark HD, Mirecki RM (2005) Spectral properties of selected UV-blocking and UV-transmitting covering materials with application for production of high-value crops in high tunnels. Photochem Photobiol 81:1047–1051

    CAS  PubMed  Google Scholar 

  • Lamarre C, Sokol S, Debeaupuis J-P, Henry C, Lacroix C, Glaser P, Coppée J-I, François J-M, Latgé J-P (2008) Transcriptomic analysis of the exit from dormancy of Aspergillus fumigatus conidia. BMC Genom 9:417

    Google Scholar 

  • Leach CM (1965) Ultraviolet-absorbing substances associated with light-induced sporulation in fungi. Can J Bot 43:185–200

    CAS  Google Scholar 

  • Leach CM (1972) An action spectrum for light-induced sexual reproduction in the ascomycete fungus Leptosphearulina trifolii. Mycologia 64:475–490

    Google Scholar 

  • Leach CM, Trione EJ (1966) Action spectra for light-induced sporulation of the fungi Pleospora herbarum and Alternaria dauci. Photochem Photobiol 5:621–630

    CAS  Google Scholar 

  • Leach CM, Tulloch M (1972) Induction of sporulation of fungi isolated from Dactylis glomerata seed by exposure to near-ultraviolet radiation. Ann Appl Biol 71:155–159

    Google Scholar 

  • St. Leger RJ, Butt TM, Goettel MS, Staples RC, Roberts DW (1989) Production in vitro of appressoria by the entomopathogenic fungus Metarhizium anisopliae. Exp Mycol 13:274–288

  • St. Leger RJ, Butt TM, Staples RC, Roberts DW (1989) Synthesis of proteins including a cuticle-degrading protease during differentiation of the entomopathogenic fungus Metarhizium anisopliae. Exp Mycol 13:253–262

  • Leite B, Nicholson RL (1992) Mycosporine-alanine: a self-inhibitor of germination from the conidial mucilage of Colletotrichum graminicola. Exp Mycol 16:76–86

    CAS  Google Scholar 

  • Libkind D, Pérez P, Sommaruga R, Diéguez MC, Ferraro M, Brizzio S, Zagarese H, van Broock M (2004) Constitutive and UV-inducible synthesis of photoprotective compounds (carotenoids and mycosporines) by freshwater yeasts. Photochem Photobiol Sci 3:281–286

    CAS  PubMed  Google Scholar 

  • Libkind D, Moliné M, Sommaruga R, Sampaio JP, van Broock M (2011) Phylogenetic distribution of fungal mycosporines within the Pucciniomycotina (Basidiomycota). Yeast 28:619–627

    CAS  PubMed  Google Scholar 

  • Liu Q, Ying S-H, Li J-G, Tian C-G, Feng M-G (2013) Insight into the transcriptional regulation of Msn2 required for conidiation, multi-stress responses and virulence of two entomopathogenic fungi. Fungal Gen Biol 54:42–51

    CAS  Google Scholar 

  • Liyanage I, Peries OS, AdeS Liyanage (1982) Observations on the development of the sporophore of Rigidoporus lignosus and the release and germination of basidiospores. Jl Rubb Inst Sri Lanka 60:59–68

    Google Scholar 

  • Luque EV, Gutiérrez G, Navarro-Sampedro L, Olmedo M, Rodríguez-Romero J, Ruger-Herreros C, Tagua VG, Corrochano LM (2012) A relationship between carotenoid accumulation and the distribution of species of the fungus Neurospora in Spain. PLoS ONE 7:e33658

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maddison AC, Manners JG (1973) Lethal effects of artificial ultraviolet radiation on cereal rust uredospores. Trans British Mycol Soc 60:471–494

    Google Scholar 

  • Magoon J, Messing-Al-Aidroos (1985) Epistatic relationships and linkage among colour markers of the imperfect entomopathogenic fungus Metarhizium anisopliae. Can J Gent Cytol 28:96–100

    Google Scholar 

  • McKenzie RL, Aucamp PJ, Bais AF, Björn LO, Ilyas M (2007) Changes in biologically-active ultraviolet radiation reaching the Earth’s surface. Photochem Photobiol Sci 6:218–231

    CAS  PubMed  Google Scholar 

  • Medina A, Schmidt-Heydt M, Rodríguez A, Parra R, Geisen R, Magan N (2015) Impacts of environmental stress on growth, secondary metabolite biosynthetic gene clusters and metabolite production of xerotolerant/xerophilic fungi. Curr Gen. doi:10.1007/s00294-014-0455-9

  • Miller CD, Rangel DEN, Braga GUL, Flint SD, Kwon S-I, Messias CL, Roberts DW, Anderson AJ (2004) Enzyme activities associated with oxidative stress in Metarhizium anisopliae during germination, mycelial growth, and conidiation and in response to near-UV irradiation. Can J Microbiol 50:41–49

    CAS  PubMed  Google Scholar 

  • Mizubuti ESG, Aylor DE, Fry WE (2000) Survival of Phytophthora infestans sporangia exposed to solar radiation. Phytopathology 90:78–84

    CAS  PubMed  Google Scholar 

  • Moeller R, Setlow P, Reitz G, Nicholson WL (2009) Roles of small, acid-soluble spore proteins and core water content in survival of Bacillus subtilis spores exposed to environmental solar UV radiation. Appl Environ Microbiol 75:5202–5208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moliné M, Libkind D, MdelC Diéguez, van Broock M (2009) Photoprotective role of carotenoids in yeasts: response to UV-B of pigmented and naturally-occuring albino strains. J Photochem Photobiol B Biol 95:156–161

    Google Scholar 

  • Moliné M, Flores MR, Libkind D, Diéguez MC, Farías ME et al (2010) Photoprotection by carotenoid pigments in the yeasts Rhodotorula mucilaginosa: the role of torularhodin. Photochem Photobiol Sci 9:1145–1151

    PubMed  Google Scholar 

  • Mondal AH, Parbery DG (2005) The protective role of the spore matrix of Colletotrichum musae during rehydration and exposure to extreme temperatures and UV radiation. Australasian Plant Pathol 34:229–235

    Google Scholar 

  • Moody SA, Newsham KK, Ayres PG, Paul ND (1999) Variation in the responses of litter and phylloplane fungi to UV-B radiation (290–315 nm). Mycol Res 103:1469–1477

    Google Scholar 

  • Mooney JL, Yager LN (1990) Light is required for conidiation in Aspergillus nidulans. Gen Dev 4:1473–1482

    CAS  Google Scholar 

  • Moore D, Bridge PH, Higgins PM, Bateman RP, Prior C (1993) Ultra-violet radiation damage to Metarhizium flavoviride conidia and the protection given by vegetable and mineral oils and chemical sunscreens. Ann Appl Biol 122:605–616

    CAS  Google Scholar 

  • Morley-Davies J, Moore D, Prior C (1996) Screening of Metarhizium and Beauveria spp. conidia with exposure to simulated sunlight and a range of temperatures. Mycol Res 100:31–38

    Google Scholar 

  • Morris SAC, Subden RE (1974) Effects of ultraviolet radiation on carotenoid containing and albino strains of Neurospora crassa. Mutat Res 22:105–109

    CAS  PubMed  Google Scholar 

  • Mouret S, Baudouin C, Charveron M, Favier A, Cadet J, Douki T (2006) Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proc Natl Acad Sci USA 103:13765–13770

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murdoch LE, McKenzie K, Maclean M, MacGregor SJ (2013) Lethal effects of high-intensity violet 450-nm light on Saccharomyces cerevisiae, Candida albicans, and on dormant and germinating spores of Aspergillus niger. Fungal Biol 117:519–527

    CAS  PubMed  Google Scholar 

  • Nascimento É, da Silva SH, Marques ER, Roberts DW, Braga GUL (2010) Quantification of cyclobutane pyrimidine dimers induced by UVB radiation in conidia of the fungi Aspergillus fumigatus, Aspergillus nidulans, Metarhizium acridum and Metarhizium robertsii. Photochem Photobiol 86:1259–1266

    CAS  PubMed  Google Scholar 

  • Newman PA, McKenzie R (2011) UV impacts avoided by the Montreal Protocol. Photochem Photobiol Sci 10:1152–1160

    CAS  PubMed  Google Scholar 

  • Newsham KK, Low MNR, Mc Leod AR, Greenslade PD, Emmett BA (1997) Ultraviolet-B radiation influences the abundance and distribution of phylloplane fungi on pedunculate oak (Quercus robur). New Phytol 136:287–297

    Google Scholar 

  • Nguyen K-H, Chollet-Krugler M, Gouault N, Tomasi S (2013) UV-protectant metabolites from lichens and their symbiotic partners. Nat Prod Rep 30:1490–1508

    CAS  PubMed  Google Scholar 

  • Nilssen EA, Synnes M, Tvegard T, Vebø H, Boye E, Grallert B (2004) Germinating fission yeast spores delay in GI in response to UV irradiation. BMC Cell Biol 5:40

    PubMed  PubMed Central  Google Scholar 

  • Ningen SS, Cole JC, Smith MW, Dunn DE, Conway KE (2005) Increased shade intensity and afternoon irrigation decrease anthracnose severity on three Euonymus fortune cultivars. HortScience 40:111–113

    Google Scholar 

  • Noir S, Colby T, Harzen A, Schmidt J, Panstruga R (2009) A proteomic analysis of the powdery mildew (Blumeria graminis f.sp. hordei) conidiospores. Mol Plant Pathol 10:223–236

    CAS  PubMed  Google Scholar 

  • Oh YT, Ahn C-S, Kim JG, Ro H-S, Lee C-W, Kim JW (2010) Proteomic analysis of early phase of conidia germination in Aspergillus nidulans. Fungal Genet Biol 47:246–253

    CAS  PubMed  Google Scholar 

  • Olmedo M, Ruger-Herreros C, Luque EM, Corrochano LM (2013) Regulation of transcription by light in Neurospora crassa: a model for fungal photobiology? Fungal Biol Rev 27:10–18

    Google Scholar 

  • Oren A, Gunde-Cimerman N (2007) Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites? FEMS Microbiol Lett 269:1–10

    CAS  PubMed  Google Scholar 

  • Ortiz-Urquiza A, Keyhani NO (2015) Stress response signaling and virulence: insights from entomopathogenic fungi. Curr Genet. doi:10.1007/s00294-014-0439-9

  • Osherov N, May G (2000) Conidial germination in Aspergillus nidulans requires RAS signaling and protein synthesis. Genetics 155:647–656

    CAS  PubMed  PubMed Central  Google Scholar 

  • Owens OVH, Krizek DT (1980) Multiple effects of UV radiation (265–330 nm) on fungal spore emergence. Photochem Photobiol 32:41–49

    Google Scholar 

  • Parisi AV, Schouten P, Downs NJ, Turner J (2010) Solar UV exposures measured simultaneously to all arbitrarily oriented leaves on a plant. J Photochem Photobiol B 99:87–92

    CAS  PubMed  Google Scholar 

  • Parnell M, Burt PJA, Wilson K (1998) The influence of exposure to ultraviolet radiation in simulated sunlight on ascospores causing black sigatoga disease of banana and plantain. Int J Biometeorol 42:22–27

    Google Scholar 

  • Paul ND, Rasanayagam S, Moody SA, Hatcher PE, Ayres PG (1997) The role of interactions between trophic levels in determining the effects of UV-B on terrestrial ecosystems. Plant Ecol 128:296–308

    Google Scholar 

  • Paul ND, Jacobson RJ, Taylor A, Wargent JJ, Moore JP (2005) The use of wavelength-selective plastic cladding materials in horticulture: understanding of crop and fungal responses through the assessment of biological spectral weighting functions. Photochem Photobiol 81:1052–1060

    CAS  PubMed  Google Scholar 

  • Paul ND, Moore JP, McPherson M, Lambourne C, Croft P, Heaton JC, Wargent JJ (2012) Ecological responses to UV radiation: interactions between the biological effects of UV on plants and on associated organisms. Physiol Plant 145:565–581

    CAS  PubMed  Google Scholar 

  • Petin VG, Zhurakovskaya GP, Komarova LN (1997) Fluence rate as a determinant of synergistic interaction under simultaneous action of UV light and mild heat in Saccharomyces cerevisiae. J Photochem Photobiol B Biol 38:123–128

    CAS  Google Scholar 

  • Pihet M, Vandeputte P, Tronchin G, Renier G, Saulnier P, Georgeault S, Mallet R, Chabasse D, Symoens F, Bouchara J-P (2009) Melanin is an essential component for the integrity of the cell wall of Aspergillus fumigatus conidia. BMC Microbiol 9:177

    PubMed  PubMed Central  Google Scholar 

  • Purschwitz J, Müller S, Kastner C, Fisher R (2006) Seeing the rainbow: light sensing in fungi. Curr Opin Microbiol 9:566–571

    CAS  PubMed  Google Scholar 

  • Quaite FE, Sutherland BM, Sutherland JC (1992) Action spectrum for DNA damage in alfalfa lowers predicted impact of ozone depletion. Nature 358:576–578

    CAS  Google Scholar 

  • Rangel DEN, Braga GUL, Anderson AJ, Roberts DW (2005a) Variability in conidial thermotolerance of Metarhizium anisopliae isolates from different geographic origins. J Invertebr Pathol 88:116–125

    PubMed  Google Scholar 

  • Rangel DEN, Braga GUL, Anderson AJ, Roberts DW (2005b) Influence of growth environment on tolerance to UV-B radiation, germination speed, and morphology of Metarhizium anisopliae var. acridum conidia. J Invertebr Pathol 90:55–58

    PubMed  Google Scholar 

  • Rangel DEN, Braga GUL, Flint SD, Anderson AJ, Roberts DW (2005c) Variations in UV-B tolerance and germination speed of Metarhizium anisopliae conidia produced on insects and artificial substrates. J Invertebr Pathol 87:77–83

    Google Scholar 

  • Rangel DEN, Anderson AJ, Roberts DW (2006a) Growth of Metarhizium anisopliae on non-preferred carbon sources yields conidia with increased UV-B tolerance. J Invertebr Pathol 93:127–134

    CAS  PubMed  Google Scholar 

  • Rangel DEN, Butler MJ, Torabinejad J, Anderson AJ, Braga GUL, Day AW, Roberts DW (2006b) Mutants and isolates of Metarhizium anisopliae are diverse in their relationships between conidial pigmentation and stress tolerance. J Invertebr Pathol 93:170–182

    PubMed  Google Scholar 

  • Rangel DEN, Anderson AJ, Roberts DW (2008) Evaluating physical and nutritional stress during mycelial growth as inducers of tolerance to heat and UV-B radiation in Metarhizium anisopliae conidia. Mycol Res 112:1362–1372

    PubMed  Google Scholar 

  • Rangel DEN, Fernandes ÉKK, Braga GUL, Roberts DW (2011) Visible light during mycelial growth and conidiation of Metarhizium robertsii produces conidia with increased stress tolerance. FEMS Microbiol Lett 315:81–86

    CAS  PubMed  Google Scholar 

  • Rangel DEN, Braga GUL, Fernandes ÉKK, Keyser CA, Hallsworth JE, Roberts DW (2015) Stress tolerance and virulence of insect-pathogenic fungi are significantly altered by the growth environment. Curr Genet. doi:10.1007/s00294-015-0477-y

  • Rasanayagam MS, Paul ND, Royle DJ, Ayres PG (1995) Variation in responses of spores of Septoria tritici and S. nodorum to UV-B irradiation in vitro. Mycol Res 99:1371–1377

    Google Scholar 

  • Ravid M, Antignus Y (2004) UV radiation effects on pathogens and insect pests of greenhouse-grown crops. Photochem Photobiol 79:219–226

    Google Scholar 

  • Ray AC, Eakin RE (1975) Studies on the biosynthesis of Aspergillin by Aspergillus niger. Appl Environ Microbiol 30:909–915

    CAS  Google Scholar 

  • Rezanka T, Temina M, Tolstikov AG, Dembitsky VM (2004) Natural microbial UV filters—Mycosporine-like amino acids. Folia Microbiol 49:339–352

    CAS  Google Scholar 

  • Rebeil R, Nicholson WL (2001) The subunit structure and catalytic mechanism of the Bacillus subtilis DNA repair enzyme spore photoproduct lyase. Proc Nat Acad Sci USA 98:9038–9043

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues GB, Primo FL, Tedesco AC, Braga GUL (2012) In vitro photodynamic inactivation of Cryptococcus neoformans melanized cells with chloroaluminum phthalocyanine nanoemulsion. Photochem Photobiol 88:440–447

    CAS  PubMed  Google Scholar 

  • Röhrig J, Kastner C, Fisher R (2013) Light inhibits spore germination through phytochrome in Aspergillus nidulans. Curr Genet 59:55–62

    PubMed  Google Scholar 

  • Rotem J, Wooding B, Aylor DE (1985) The role of solar radiation, especially ultraviolet, in the mortality of fungal spores. Phytopathology 75:510–514

    Google Scholar 

  • Ruiz-Roldán MC, Garre V, Guarro J, Mariné M, Roncero MIG (2008) Role of the white collar 1 photoreceptor in carotenogenesis, UV resistance, hydophobicity, and virulence of Fusarium oxysporum. Eukaryot Cell 7:1227–1230

    PubMed  PubMed Central  Google Scholar 

  • Ryel RJ, Flint S, Barnes P (2010) Solar UV-B radiation and global dimming: effects on plant growth and UV-shielding. In: Gao WD, Schmoldt D, Slusser J (eds) UV radiation in global climate change: measurements, modeling and effects on ecosystems. Springer-Verlag and Tsinghua University Press, New York, pp 370–394

  • Sametz-Baron L, Berrocal-Tito GM, Amit R, Herrera-Estrella A, Horwitz BA (1997) Photoreactivation of UV-inactivated spore of Trichoderma harzianum. Photochem Photobiol 65:849–854

    CAS  Google Scholar 

  • Santos MP, Dias LP, Ferreira PC, Pasin LA, Rangel DEN (2011) Cold activity and tolerance of the entomopathogenic fungus Tolypocladium spp. to UV-B irradiation and heat. J Invertebr Pathol 108:209–213

    PubMed  Google Scholar 

  • Schadeck RJG, Leite B, Buchi DF (1998) Lipid mobilization and acid phosphatase activity in lytic compartments during conidium dormancy and appressorium formation of Colletotrichum graminicola. Cell Struct Funct 23:333–340

    CAS  PubMed  Google Scholar 

  • Schiave LA, Pedroso RS, Candido RC, Roberts DW, Braga GUL (2009) Variability in UVB tolerances of melanized and nonmelanized cells of Cryptococcus neoformans and C. laurentii. Photochem Photobiol 85:205–213

    CAS  PubMed  Google Scholar 

  • Schmit JC, Brody S (1976) Biochemical genetics of Neurospora crassa conidial germination. Bacterial Rev 40:1–41

    CAS  Google Scholar 

  • Schuch AP, Menck CFM (2010) The genotoxic effects of DNA lesions induced by artificial UV-radiation and sunlight. J Photochem Photobiol B 99:111–116

    CAS  PubMed  Google Scholar 

  • Schuch AP, da Silva Galhardo R, de Lima-Bessa KM, Schuch NJ, Menck CFM (2009) Development of a DNA-dosimeter system for monitoring the effects of solar-ultraviolet radiation. Photochem Photobiol Sci 8:111–120

    CAS  PubMed  Google Scholar 

  • Schuch AP, Yagura T, Makita K, Yamamoto H, Schuch NJ, Agnez-Lima LF, MacMahon RM, Menck CFM (2012) DNA damage profiles induced by sunlight at different latitudes. Environ Mol Mutagen 53:198–206

    CAS  PubMed  Google Scholar 

  • Setlow P (1995) Mechanisms for the prevention of damage to DNA in spores of Bacillus species. Ann Rev Microbiol 49:29–54

    CAS  Google Scholar 

  • Shang Y, Duan Z, Huang W, Gao Q, Wang C (2012) Improving UV resistance and virulence of Beauveria bassiana by genetic engineering with an exogenous tyrosinase gene. J Invertebr Pathol 109:105–109

    CAS  PubMed  Google Scholar 

  • Singaravelan N, Grishkan I, Becharav A, Wakamatsu K, Ito S, Nevo E (2008) Adaptive melanin response of the soil fungus Aspergillus niger to UV radiation stress at “Evolution Canyon”, Mont Carmel Israel. PLoS ONE 3:e2993

    PubMed  PubMed Central  Google Scholar 

  • Sinha RP, Singh SP, Häder D-P (2007) Database on mycosporines and mycosporine-like amino acids (MAAs) in fungi, cyanobacteria, macroalgae, phytoplankton and animals. J Photochem Photobiol B Biol 89:29–35

    CAS  Google Scholar 

  • Slieman TA, Nicholson WL (2000) Artificial and solar UV radiation induces strand breaks and cyclobutane pyrimidine dimers in Bacillus subtilis spore DNA. Appl Environ Microbiol 66:199–205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Solomon PS, Waters ODC, Oliver RP (2007) Decoding the mannitol enigma in filamentous fungi. Trends Microbiol 15:257–262

    CAS  PubMed  Google Scholar 

  • Sommaruga R, Libkind D, van Broock M, Whitehead K (2004) Mycosporine-glutaminol-glucoside, a UV-absorbing compound of two Rhodotorula yeast species. Yeast 21:1077–1081

    CAS  PubMed  Google Scholar 

  • Son H, Lee J, Lee Y-W (2012) Mannitol induces the conversion of conidia to chlamydospore-like structures that confer enhanced tolerance to heat, drought, and UV in Giberella zeae. Microbiol Res 167:608–615

    CAS  PubMed  Google Scholar 

  • Soriani FM, Kress MR, Fagundes de Gouvêa P, Malavazi I, Savoldi M, Gallmetzer A, Strauss J, Goldman MH, Goldman GH (2009) Functional characterization of the Aspergillus nidulans methionine sulfoxide reductase (msrA and msrB). Fungal Genet Biol 46:410–417

    CAS  PubMed  Google Scholar 

  • Sproston T (1971) An action spectrum for induced sporulation in the fungus Stemphylium solani Weber. Photochem Photobiol 14:571–576

    Google Scholar 

  • Størmer FC, Sandven P, Huitfeldt HS, Eduard W, Skogstad A (1998) Does the mycotoxin citrinin function as a sun protectant in conidia from Penicillium verrucosum. Mycopathologia 142:43–47

    PubMed  Google Scholar 

  • Trautinger F, Kindås-Mügge I, Knobler RM, Hönigsmann H (1996) Stress proteins in the cellular response to ultraviolet radiation. J Photochem Photobiol B Biol 35:141–148

    CAS  Google Scholar 

  • Tsai H-F, Chang YC, Washburn RG, Wheeler MH, Kwon-Chung KJ (1998) The developmentally regulated alb1 gene of Aspergillus fumigatus: its role in modulation of conidial morphology and virulence. J Bacteriol 180:3031–3038

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai H-F, Wheeler MH, Chang YC, Kwon-Chung KJ (1999) A developmentally regulated gene cluster involved in conidial pigment biosynthesis in Aspergillus fumigatus. J Bacteriol 181:6469–6477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng M-N, Chung P-C, Tzean S-S (2011) Enhancing the stress tolerance and virulence of an entomopathogen by metabolic engineering of dihydroxynaphthalene melanin biosynthesis genes. Appl Environ Microbiol 77:4508–4519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng M-N, Chung P-C, Tzean S-S (2014) Mechanisms relevant to the enhanced virulence of a dihydroxynaphthalene melanin metabolically engineered entomopathogen. PLoS ONE 9(3):e90473

    PubMed  PubMed Central  Google Scholar 

  • Ulevičius V, Pečiulyté D, Lugauskas A, Andriejauskiené J (2004) Field study on changes in viability of airborne propagules exposed to UV radiation. Environ Toxicol 19:437–441

    PubMed  Google Scholar 

  • Van Etten JL, Dahlberg KR, Russo GM (1983) Fungal spore germination. In: Smith JE (ed) Fungal differentiation: a contemporary synthesis. Marcel Dekker, New York, pp 235–268

    Google Scholar 

  • Verma S, Idnurm A (2013) The Uve1 endonuclease is regulated by the white collar complex to protect Cryptococcus neoformans from UV damage. PLoS Genet 9:e1003769

    CAS  PubMed  PubMed Central  Google Scholar 

  • Volkmann M, Whitehead K, Rütters H, Rullkötter J, Gorbushina AA (2003) Mycosporine-glutamicol-glucoside: a natural UV-absorbing secondary metabolite of rock-inhabiting microcolonial fungi. Rapid Commun Mass Spectrom 17:897–902

    CAS  PubMed  Google Scholar 

  • Wang C, Feng M-G (2014) Advances in fundamental and applied studies in China of fungal biocontrol agents for use against arthropod pests. Biol Control 68:129–135

    Google Scholar 

  • Wang Z-L, J-d Lu, Feng M-G (2012) Primary roles of two dehydrogenases in the mannitol metabolism and multi-stress tolerance of entomopathogenic fungus Beauveria bassiana. Environ Microbiol 14:2139–2150

    CAS  PubMed  Google Scholar 

  • Wang Z-L, Zhang L-B, Ying S-H, Feng M-G (2013) Catalases play differentiated roles in the adaptation of a fungal entomopathogen to environmental stresses. Environ Microbiol 15:409–418

    CAS  PubMed  Google Scholar 

  • Wheeler MH, Bell AA (1988) Melanins and their importance in pathogenic fungi. In: McGinnis MR (ed) Current topics in medical mycology. Springer Verlag, New York, pp 338–387

    Google Scholar 

  • Will III OH , Dixon D, Birney A, Thomas PL (1987) Effects of far UV and visible light on germination of wild type and albino teliospores of Ustilago nuda. Can J Plant Pathol 9:225–229

    Google Scholar 

  • Willocquet L, Colombet D, Rougier M, Fargues J, Clerjeau M (1996) Effects of radiation, especially ultraviolet B, on conidial germination and mycelial growth of grape powdery mildew. Eur J Plant Pathol 102:441–449

    Google Scholar 

  • Wu BM, Subbarao KV, van Bruggen AHC (2000) Factors affecting the survival of Bremia lactucae sporangia deposited on lettuce leaves. Phytopathology 90:827–833

    CAS  PubMed  Google Scholar 

  • Xi X-Q, Li F, Ying S-H, Feng M-G (2012) Additive contributions of two manganese-cored superoxide dismutases (MnSODs) to antioxidation, UV tolerance and virulence of Beauveria bassiana. PLoS ONE 7:e30298

    Google Scholar 

  • Yao S-L, Ying S-H, Feng M-G, Hatting JL (2010) In vitro and in vivo responses of fungal biocontrol agents to gradient doses of UV-B and UV-A irradiation. Biocontrol 55:413–422

    CAS  Google Scholar 

  • Young H, Patterson VJ (1982) A UV protective compound from Glomerella cingulata-a mycosporine. Phytochemistry 21:1075–1077

    CAS  Google Scholar 

  • Yu S-M, Ramkumar G, Lee YH (2013) Light quality influences the virulence and physiological responses of Colletotrichum acutatum causing anthracnose in pepper plants. J Appl Microbiol 115:509–516

    CAS  PubMed  Google Scholar 

  • Zalokar M (1955) Biosynthesis of carotenoids in Neurospora. Action spectrum of photoactivation. Arch Biochem Biophys 56:318–325

    CAS  PubMed  Google Scholar 

  • Zhang Y-J, Li Z-H, Luo Z-B, Zhang J-Q, Fan Y-H, Pei Y (2009) Light stimulates conidiation of the entomopathogenic fungus Beauveria bassiana. Biocontrol Sci Techn 19:91–101

    Google Scholar 

  • Zimmermann G (1982) Effect of high temperatures and artificial sunlight on the viability of conidia of Metarhizium anisopliae. J Invertebr Pathol 40:36–40

    Google Scholar 

Download references

Acknowledgments

We wish to express our appreciation to Alene Alder-Rangel who helped improve this manuscript. This review article was supported in part by the Grants 2012/15204-8 for GULB and 2010/06374-1 and 2014/01229-4 for DENR from the State of São Paulo Research Foundation (FAPESP) and by the grants PQ 304192/2012-0 for GULB and PQ 302312/2011 for DENR from the Brazilian National Council for Scientific and Technological Development (CNPq) and for DWR by Cooperative Agreements with the US Department of Agriculture (USDA-APHIS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilberto U. L. Braga.

Additional information

Communicated by D. E. N. Rangel.

This article is part of the Special Issue “Fungal Stress Responses”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braga, G.U.L., Rangel, D.E.N., Fernandes, É.K.K. et al. Molecular and physiological effects of environmental UV radiation on fungal conidia. Curr Genet 61, 405–425 (2015). https://doi.org/10.1007/s00294-015-0483-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-015-0483-0

Keywords

Navigation