Current Genetics

, Volume 61, Issue 4, pp 493–496 | Cite as

A complex path for domestication of B. subtilis sociality

  • Shaul Pollak
  • Shira Omer Bendori
  • Avigdor EldarEmail author


Microorganisms adapt to the lab environment by eliminating unnecessary genetic systems. In Bacillus subtilis, such adaptation resulted in the lab strain being unable to form complex, matrix-associated structures known as biofilms. We recently showed that the ancestor of the lab strain, which is considered by the research community to be a stereotypical ‘wild’ strain, carries an atypical mutation in the RapP–PhrP quorum-sensing system. We have found that this mutation has profound effects on the biofilm phenotype of the ancestral strain. Here we discuss these recent findings and present more data that focuses on the lessons that can be learned from this work on the domestication of microorganisms.


Quorum sensing Biofilm Bacillus subtilis Domestication Peptide signaling Evolution 


  1. Aguilar C, Vlamakis H, Losick R, Kolter R (2007) Thinking about Bacillus subtilis as a multicellular organism. Curr Opin Microbiol 10:638–643PubMedCentralCrossRefPubMedGoogle Scholar
  2. Branda SS, González-Pastor JE, Ben-Yehuda S, Losick R, Kolter R (2001) Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci 98:11621–11626PubMedCentralCrossRefPubMedGoogle Scholar
  3. D’Andrea LD, Regan L (2003) TPR proteins: the versatile helix. Trends Biochem Sci 28:655–662CrossRefPubMedGoogle Scholar
  4. Grossman AD (1995) Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis. Annu Rev Genet 29:477–508CrossRefPubMedGoogle Scholar
  5. Kearns DB, Chu F, Branda SS, Kolter R, Losick R (2005) A master regulator for biofilm formation by Bacillus subtilis. Mol Microbiol 55:739–749CrossRefPubMedGoogle Scholar
  6. Konkol MA, Blair KM, Kearns DB (2013) Plasmid-encoded ComI inhibits competence in the ancestral strain of Bacillus subtilis. J Bacteriol 195(18):4085–4093PubMedCentralCrossRefPubMedGoogle Scholar
  7. Kuthan M, Devaux F, Janderova B, Slaninova I, Jacq C et al (2003) Domestication of wild Saccharomyces cerevisiae is accompanied by changes in gene expression and colony morphology. Mol Microbiol 47:745–754CrossRefPubMedGoogle Scholar
  8. Lazazzera BA, Grossman AD (1998) The ins and outs of peptide signaling. Trends Microbiol 6:288–294CrossRefPubMedGoogle Scholar
  9. Leiman SA, May JM, Lebar MD, Kahne D, Kolter R et al (2013) D-amino acids indirectly inhibit biofilm formation in Bacillus subtilis by interfering with protein synthesis. J Bacteriol 195:5391–5395PubMedCentralCrossRefPubMedGoogle Scholar
  10. Lopez D, Vlamakis H, Kolter R (2009) Generation of multiple cell types in Bacillus subtilis. FEMS Microbiol Rev 33:152–163CrossRefPubMedGoogle Scholar
  11. Mathé L, Van Dijck P (2013) Recent insights into Candida albicans biofilm resistance mechanisms. Curr Genet 59:251–264PubMedCentralCrossRefPubMedGoogle Scholar
  12. McLoon AL, Guttenplan SB, Kearns DB, Kolter R, Losick R (2011) Tracing the domestication of a biofilm-forming bacterium. J Bacteriol 193:2027–2034PubMedCentralCrossRefPubMedGoogle Scholar
  13. Mirouze N, Parashar V, Baker MD, Dubnau DA, Neiditch MB (2011) An atypical Phr peptide regulates the developmental switch protein RapH. J Bacteriol 193:6197–6206PubMedCentralCrossRefPubMedGoogle Scholar
  14. Omer BS, Pollak S, Hizi D, Eldar A (2015) The RapP–PhrP quorum-sensing system of Bacillus subtilis strain NCIB3610 affects biofilm formation through multiple targets, due to an atypical signal-insensitive allele of RapP. J Bacteriol 197:592–602CrossRefGoogle Scholar
  15. Parashar V, Konkol MA, Kearns DB, Neiditch MB (2013) A plasmid-encoded phosphatase regulates bacillus subtilis biofilm architecture, sporulation, and genetic competence. J Bacteriol 195:2437–2448PubMedCentralCrossRefPubMedGoogle Scholar
  16. Perego M (2013) Forty years in the making: understanding the molecular mechanism of peptide regulation in bacterial development. PLoS Biol 11:e1001516PubMedCentralCrossRefPubMedGoogle Scholar
  17. Sepahi E, Tarighi S, Ahmadi FS, Bagheri A (2015) Inhibition of quorum sensing in Pseudomonas aeruginosa by two herbal essential oils from Apiaceae family. J Microbiol 53(2):176–180CrossRefPubMedGoogle Scholar
  18. Spizizen J (1958) Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc Natl Acad Sci USA 44:1072PubMedCentralCrossRefPubMedGoogle Scholar
  19. Tanaka T, Ogura M (1998) A novel Bacillus natto plasmid pLS32 capable of replication in Bacillus subtilis. FEBS Lett 422:243–246CrossRefPubMedGoogle Scholar
  20. Vlamakis H, Chai Y, Beauregard P, Losick R, Kolter R (2013) Sticking together: building a biofilm the Bacillus subtilis way. Nat Rev Microbiol 11(3):157–168PubMedCentralCrossRefPubMedGoogle Scholar
  21. Zeigler DR, Prágai Z, Rodriguez S, Chevreux B, Muffler A et al (2008) The origins of 168, W23, and other Bacillus subtilis legacy strains. J Bacteriol 190:6983–6995PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Shaul Pollak
    • 1
  • Shira Omer Bendori
    • 1
  • Avigdor Eldar
    • 1
    Email author
  1. 1.Department of Molecular Microbiology and BiotechnologyTel Aviv UniversityTel AvivIsrael

Personalised recommendations