Bacterial histone-like proteins: roles in stress resistance

Abstract

Histone-like proteins (HLPs) are small and basic bacterial proteins that are associated with a nucleoid and play roles in maintaining DNA architecture and regulating DNA transactions such as replication, recombination/repair and transcription. The studies on HLPs from a variety of bacterial species in recent years are summarized in this mini-review. A recent study reported a novel DNA-binding protein (HP119) in Helicobacter pylori that shows some HLP features. It plays a large role in aiding bacterial stress resistance. We provide herein additional evidence that HP119 is a nucleoid-associated protein, and present some perspectives for future study.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Almarza O, Nunez D, Toledo H (2015) The DNA-binding protein hu has a regulatory role in the acid stress response mechanism in Helicobacter pylori. Helicobacter 20:29–40

    CAS  Article  PubMed  Google Scholar 

  2. Bi H, Zhang C (2014) Integration host factor is required for the induction of acid resistance in Escherichia coli. Curr Microbiol 69:218–224

    CAS  Article  PubMed  Google Scholar 

  3. Bi H, Sun L, Fukamachi T, Saito H, Kobayashi H (2009) HU participates in expression of a specific set of genes required for growth and survival at acidic pH in Escherichia coli. Curr Microbiol 58:443–448

    CAS  Article  PubMed  Google Scholar 

  4. Bradley MD, Beach MB, de Koning AP, Pratt TS, Osuna R (2007) Effects of Fis on Escherichia coli gene expression during different growth stages. Microbiology 153:2922–2940

    CAS  Article  PubMed  Google Scholar 

  5. Chen C, Ghosh S, Grove A (2004) Substrate specificity of Helicobacter pylori histone-like HU protein is determined by insufficient stabilization of DNA flexure points. Biochem J 383:343–351

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  6. Colangeli R, Haq A, Arcus VL, Summers E, Magliozzo RS, McBride A, Mitra AK, Radjainia M, Khajo A, Jacobs WR Jr et al (2009) The multifunctional histone-like protein Lsr2 protects mycobacteria against reactive oxygen intermediates. Proc Natl Acad Sci USA 106:4414–4418

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  7. Dillon SC, Dorman CJ (2010) Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol 8:185–195

    CAS  Article  PubMed  Google Scholar 

  8. Ding SZ, Minohara Y, Fan XJ, Wang J, Reyes VE, Patel J, Dirden-Kramer B, Boldogh I, Ernst PB, Crowe SE (2007) Helicobacter pylori infection induces oxidative stress and programmed cell death in human gastric epithelial cells. Infect Immun 75:4030–4039

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  9. Dorman CJ (2009) Nucleoid-associated proteins and bacterial physiology. Adv Appl Microbiol 67:47–64

    CAS  Article  PubMed  Google Scholar 

  10. Dorman CJ, Deighan P (2003) Regulation of gene expression by histone-like proteins in bacteria. Curr Opin Genet Dev 13:179–184

    CAS  Article  PubMed  Google Scholar 

  11. Eijkelkamp BA, Stroeher UH, Hassan KA, Elbourne LD, Paulsen IT, Brown MH (2013) H-NS plays a role in expression of Acinetobacter baumannii virulence features. Infect Immun 81:2574–2583

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  12. Grainger DC, Goldberg MD, Lee DJ, Busby SJ (2008) Selective repression by Fis and H-NS at the Escherichia coli dps promoter. Mol Microbiol 68:1366–1377

    CAS  Article  PubMed  Google Scholar 

  13. Kahramanoglou C, Seshasayee AS, Prieto AI, Ibberson D, Schmidt S, Zimmermann J, Benes V, Fraser GM, Luscombe NM (2011) Direct and indirect effects of H-NS and Fis on global gene expression control in Escherichia coli. Nucleic Acids Res 39:2073–2091

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  14. Kamashev D, Balandina A, Rouviere-Yaniv J (1999) The binding motif recognized by HU on both nicked and cruciform DNA. EMBO J 18:5434–5444

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  15. Kar S, Edgar R, Adhya S (2005) Nucleoid remodeling by an altered HU protein: reorganization of the transcription program. Proc Natl Acad Sci USA 102:16397–16402

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  16. Kar S, Choi EJ, Guo F, Dimitriadis EK, Kotova SL, Adhya S (2006) Right-handed DNA supercoiling by an octameric form of histone-like protein HU: modulation of cellular transcription. J Biol Chem 281:40144–40153

    CAS  Article  PubMed  Google Scholar 

  17. Kharchenko PV, Tolstorukov MY, Park PJ (2008) Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat Biotechnol 26:1351–1359

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  18. Kusters JG, van Vliet AH, Kuipers EJ (2006) Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev 19:449–490

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  19. Lang B, Blot N, Bouffartigues E, Buckle M, Geertz M, Gualerzi CO, Mavathur R, Muskhelishvili G, Pon CL, Rimsky S et al (2007) High-affinity DNA binding sites for H-NS provide a molecular basis for selective silencing within proteobacterial genomes. Nucleic Acids Res 35:6330–6337

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  20. Liu D, Yumoto H, Murakami K, Hirota K, Ono T, Nagamune H, Kayama S, Matsuo T, Miyake Y (2008) The essentiality and involvement of Streptococcus intermedius histone-like DNA-binding protein in bacterial viability and normal growth. Mol Microbiol 68:1268–1282

    CAS  Article  PubMed  Google Scholar 

  21. Liu ET, Pott S, Huss M (2010) Q&A: chIP-seq technologies and the study of gene regulation. BMC Biol 8:56

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  22. Luijsterburg MS, Noom MC, Wuite GJ, Dame RT (2006) The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: a molecular perspective. J Struct Biol 156:262–272

    CAS  Article  PubMed  Google Scholar 

  23. Mangan MW, Lucchini S, Danino V, Croinin TO, Hinton JC, Dorman CJ (2006) The integration host factor (IHF) integrates stationary-phase and virulence gene expression in Salmonella enterica serovar Typhimurium. Mol Microbiol 59:1831–1847

    CAS  Article  PubMed  Google Scholar 

  24. Mangan MW, Lucchini S, Croinin TO, Fitzgerald S, Hinton JC, Dorman CJ (2011) Nucleoid-associated protein HU controls three regulons that coordinate virulence, response to stress and general physiology in Salmonella enterica serovar Typhimurium. Microbiology 157:1075–1087

    CAS  Article  PubMed  Google Scholar 

  25. Micka B, Marahiel MA (1992) The DNA-binding protein HBsu is essential for normal growth and development in Bacillus subtilis. Biochimie 74:641–650

    CAS  Article  PubMed  Google Scholar 

  26. Mukherjee A, Sokunbi AO, Grove A (2008) DNA protection by histone-like protein HU from the hyperthermophilic eubacterium Thermotoga maritima. Nucleic Acids Res 36:3956–3968

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  27. Nguyen HH, de la Tour CB, Toueille M, Vannier F, Sommer S, Servant P (2009) The essential histone-like protein HU plays a major role in Deinococcus radiodurans nucleoid compaction. Mol Microbiol 73:240–252

    CAS  Article  PubMed  Google Scholar 

  28. Oberto J, Nabti S, Jooste V, Mignot H, Rouviere-Yaniv J (2009) The HU regulon is composed of genes responding to anaerobiosis, acid stress, high osmolarity and SOS induction. PLoS One 4:e4367

    PubMed Central  Article  PubMed  Google Scholar 

  29. Pettijohn DE (1988) Histone-like proteins and bacterial chromosome structure. J Biol Chem 263:12793–12796

    CAS  PubMed  Google Scholar 

  30. Rouviere-Yaniv J, Gros F (1975) Characterization of a novel, low-molecular-weight DNA-binding protein from Escherichia coli. Proc Natl Acad Sci USA 72:3428–3432

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  31. Rouviere-Yaniv J, Yaniv M, Germond JE (1979) E. coli DNA binding protein HU forms nucleosome like structure with circular double-stranded DNA. Cell 17:265–274

    CAS  Article  PubMed  Google Scholar 

  32. Scott DR, Marcus EA, Wen Y, Oh J, Sachs G (2007) Gene expression in vivo shows that Helicobacter pylori colonizes an acidic niche on the gastric surface. Proc Natl Acad Sci USA 104:7235–7240

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  33. Singh SS, Grainger DC (2013) H-NS can facilitate specific DNA-binding by RNA polymerase in AT-rich gene regulatory regions. PLoS Genet 9:e1003589

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  34. Steen JA, Steen JA, Harrison P, Seemann T, Wilkie I, Harper M, Adler B, Boyce JD (2010) Fis is essential for capsule production in Pasteurella multocida and regulates expression of other important virulence factors. PLoS Pathog 6:e1000750

    PubMed Central  Article  PubMed  Google Scholar 

  35. Stonehouse E, Kovacikova G, Taylor RK, Skorupski K (2008) Integration host factor positively regulates virulence gene expression in Vibrio cholerae. J Bacteriol 190:4736–4748

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  36. Takatsuka M, Osada-Oka M, Satoh EF, Kitadokoro K, Nishiuchi Y, Niki M, Inoue M, Iwai K, Arakawa T, Shimoji Y et al (2011) A histone-like protein of mycobacteria possesses ferritin superfamily protein-like activity and protects against DNA damage by Fenton reaction. PLoS One 6:e20985

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  37. Wang G, Maier RJ (2014) A novel DNA-binding protein plays an important role in Helicobacter pylori stress tolerance and survival in the host. J Bacteriol 197:973–982

    PubMed Central  Article  PubMed  Google Scholar 

  38. Wang G, Lo LF, Maier RJ (2012) A histone-like protein of Helicobacter pylori protects DNA from stress damage and aids host colonization. DNA Repair 11:733–740

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  39. Yang CC, Nash HA (1989) The interaction of E. coli IHF protein with its specific binding sites. Cell 57:869–880

    CAS  Article  PubMed  Google Scholar 

  40. Yasuzawa K, Hayashi N, Goshima N, Kohno K, Imamoto F, Kano Y (1992) Histone-like proteins are required for cell growth and constraint of supercoils in DNA. Gene 122:9–15

    CAS  Article  PubMed  Google Scholar 

  41. Zwir I, Yeo WS, Shin D, Latifi T, Huang H, Groisman EA (2014) Bacterial nucleoid-associated protein uncouples transcription levels from transcription timing. mBio 5:e01485–e01514

    PubMed Central  CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by The University of Georgia Research Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Robert J. Maier.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Maier, R.J. Bacterial histone-like proteins: roles in stress resistance. Curr Genet 61, 489–492 (2015). https://doi.org/10.1007/s00294-015-0478-x

Download citation

Keywords

  • Histone-like proteins
  • Helicobacter pylori
  • Stress resistance