Skip to main content
Log in

Saccharomyces cerevisiae as a model for the study of extranuclear functions of mammalian telomerase

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The experimental evidence from the last decade made telomerase a prominent member of a family of moonlighting proteins performing different functions at various cellular loci. However, the study of extratelomeric functions of the catalytic subunit of mammalian telomerase (TERT) is often complicated by the fact that it is sometimes difficult to distinguish them from its role(s) at the chromosomal ends. Here, we present an experimental model for studying the extranuclear function(s) of mammalian telomerase in the yeast Saccharomyces cerevisiae. We demonstrate that the catalytic subunit of mammalian telomerase protects the yeast cells against oxidative stress and affects the stability of the mitochondrial genome. The advantage of using S. cerevisiae to study of mammalian telomerase is that (1) mammalian TERT does not interfere with its yeast counterpart in the maintenance of telomeres, (2) yeast telomerase is not localized in mitochondria and (3) it does not seem to be involved in the protection of cells against oxidative stress and stabilization of mtDNA. Thus, yeast cells can be used as a ‘test tube’ for reconstitution of mammalian TERT extranuclear function(s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed S, Passos JF, Birket MJ, Beckmann T, Brings S, Peters H, Birch-Machin MA, von Zglinicki T, Saretzki G (2008) Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress. J Cell Sci 121:1046–1053

    Article  CAS  PubMed  Google Scholar 

  • Ale-Agha N, Dyballa-Rukes N, Jakob S, Altschmied J, Haendeler J (2014) Cellular functions of the dual-targeted catalytic subunit of telomerase, telomerase reverse transcriptase–potential role in senescence and aging. Exp Gerontol 56:189–193

    Article  CAS  PubMed  Google Scholar 

  • Bah A, Bachand F, Clair E, Autexier C, Wellinger RJ (2004) Humanized telomeres and an attempt to express a functional human telomerase in yeast. Nucleic Acids Res 32:1917–1927

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blackburn EH (2010) Telomeres and telomerase: the means to the end (Nobel lecture). Angew Chem Int Ed Engl 49:7405–7421

    Article  CAS  PubMed  Google Scholar 

  • Blaisonneau J, Nosek J, Fukuhara H (1999) Linear DNA plasmid pPK2 of Pichia kluyveri: distinction between cytoplasmic and mitochondrial linear plasmids in yeasts. Yeast 15:781–791

    Article  CAS  PubMed  Google Scholar 

  • Bollmann FM (2008) The many faces of telomerase: emerging extratelomeric effects. Bioessays 30:728–732

    Article  CAS  PubMed  Google Scholar 

  • Buchner N, Zschauer TC, Lukosz M, Altschmied J, Haendeler J (2010) Downregulation of mitochondrial telomerase reverse transcriptase induced by H2O2 is Src kinase dependent. Exp Gerontol 45:558–562

    Article  PubMed  Google Scholar 

  • Chiodi I, Mondello C (2012) Telomere-independent functions of telomerase in nuclei, cytoplasm, and mitochondria. Front Oncol 2:133

    Article  PubMed Central  PubMed  Google Scholar 

  • Choi J, Southworth LK, Sarin KY, Venteicher AS, Ma W, Chang W, Cheung P, Jun S, Artandi MK, Shah N, Kim SK, Artandi SE (2008) TERT promotes epithelial proliferation through transcriptional control of a Myc- and Wnt-related developmental program. PLoS Genet 4:e10

    Article  PubMed Central  PubMed  Google Scholar 

  • Chung HK, Cheong C, Song J, Lee HW (2005) Extratelomeric functions of telomerase. Curr Mol Med 5:233–241

    Article  CAS  PubMed  Google Scholar 

  • Criddle DN, Gillies S, Baumgartner-Wilson HK, Jaffar M, Chinje EC, Passmore S, Chvanov M, Barrow S, Gerasimenko OV, Tepikin AV, Sutton R, Petersen OH (2006) Menadione-induced reactive oxygen species generation via redox cycling promotes apoptosis of murine pancreatic acinar cells. J Biol Chem 281:40485–40492

    Article  CAS  PubMed  Google Scholar 

  • Ding D, Zhou J, Wang M, Cong YS (2013) Implications of telomere-independent activities of telomerase reverse transcriptase in human cancer. FEBS J 280:3205–3211

    Article  CAS  PubMed  Google Scholar 

  • Flores I, Evan G, Blasco MA (2006) Genetic analysis of myc and telomerase interactions in vivo. Mol Cell Biol 26:6130–6138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Galligan JT, Marchetti SE, Kennell JC (2011) Reverse transcription of the pFOXC mitochondrial retroplasmids of Fusarium oxysporum is protein primed. Mob DNA 2:1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/ssDNA/PEG procedure. Yeast 11:355–360

    Article  CAS  PubMed  Google Scholar 

  • Gordon DM, Santos JH (2010) The emerging role of telomerase reverse transcriptase in mitochondrial DNA metabolism. J Nucleic Acids

  • Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Greenberg RA, O’Hagan RC, Deng H, Xiao Q, Hann SR, Adams RR, Lichtsteiner S, Chin L, Morin GB, DePinho RA (1999) Telomerase reverse transcriptase gene is a direct target of c-Myc but is not functionally equivalent in cellular transformation. Oncogene 18:1219–1226

    Article  CAS  PubMed  Google Scholar 

  • Haendeler J, Hoffmann J, Brandes RP, Zeiher AM, Dimmeler S (2003) Hydrogen peroxide triggers nuclear export of telomerase reverse transcriptase via Src kinase family-dependent phosphorylation of tyrosine 707. Mol Cell Biol 23:4598–4610

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haendeler J, Hoffmann J, Diehl JF, Vasa M, Spyridopoulos I, Zeiher AM, Dimmeler S (2004) Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells. Circ Res 94:768–775

    Article  CAS  PubMed  Google Scholar 

  • Haendeler J, Drose S, Buchner N, Jakob S, Altschmied J, Goy C, Spyridopoulos I, Zeiher AM, Brandt U, Dimmeler S (2009) Mitochondrial telomerase reverse transcriptase binds to and protects mitochondrial DNA and function from damage. Arterioscler Thromb Vasc Biol 29:929–935

    Article  CAS  PubMed  Google Scholar 

  • Hassan HM, Fridovich I (1979) Intracellular production of superoxide radical and of hydrogen peroxide by redox active compounds. Arch Biochem Biophys 196:385–395

    Article  CAS  PubMed  Google Scholar 

  • Huberts DH, van der Klei IJ (2010) Moonlighting proteins: an intriguing mode of multitasking. Biochim Biophys Acta 1803:520–525

    Article  CAS  PubMed  Google Scholar 

  • Iannilli F, Zalfa F, Gartner A, Bagni C, Dotti CG (2013) Cytoplasmic TERT associates to RNA granules in fully mature neurons: role in the translational control of the cell cycle inhibitor p15INK4B. PLoS One 8:e66602

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Indran IR, Hande MP, Pervaiz S (2011) hTERT overexpression alleviates intracellular ROS production, improves mitochondrial function, and inhibits ROS-mediated apoptosis in cancer cells. Cancer Res 71:266–276

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal RK, Kumar P, Yadava PK (2013) Telomerase and its extracurricular activities. Cell Mol Biol Lett 18:538–554

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita T, Nagamatsu G, Saito S, Takubo K, Horimoto K, Suda T (2014) Telomerase reverse transcriptase has an extratelomeric function in somatic cell reprogramming. J Biol Chem 289:15776–15787

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koeppel F, Riou JF, Laoui A, Mailliet P, Arimondo PB, Labit D, Petitgenet O, Hélène C, Mergny JL (2001) Ethidium derivatives bind to G-quartets, inhibit telomerase and act as fluorescent probes for quadruplexes. Nucleic Acids Res 29:1087–1096

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kovalenko OA, Caron MJ, Ulema P, Medrano C, Thomas AP, Kimura M, Bonini MG, Herbig U, Santos JH (2010) A mutant telomerase defective in nuclear-cytoplasmic shuttling fails to immortalize cells and is associated with mitochondrial dysfunction. Aging Cell 9:203–219

    Article  CAS  PubMed  Google Scholar 

  • Lambowitz A, Zimmerly S (2011) Group II introns: mobile ribozymes that invade DNA. Col Spring Harb Perspect Biol 3:a003616

    Google Scholar 

  • Li Y, Tergaonkar V (2014) Noncanonical functions of telomerase: implications in telomerase-targeted cancer therapies. Cancer Res 74:1639–1644

    Article  CAS  PubMed  Google Scholar 

  • Ling X, Wen L, Zhou Y (2012) Role of mitochondrial translocation of telomerase in hepatocellular carcinoma cells with multidrug resistance. Int J Med Sci 9:545–554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Listerman I, Sun J, Gazzaniga FS, Lukas JL, Blackburn EH (2013) The major reverse transcriptase-incompetent splice variant of the human telomerase protein inhibits telomerase activity but protects from apoptosis. Cancer Res 73:2817–2828

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Livak K (1997) ABI Prism 7700 sequence detection system. User Bulletin 2. PE Applied Biosystems, Foster City, CA

  • Maida Y, Yasukawa M, Furuuchi M, Lassmann T, Possemato R, Okamoto N, Kasim V, Hayashizaki Y, Hahn WC, Masutomi K (2009) An RNA-dependent RNA polymerase formed by TERT and the RMRP RNA. Nature 461:230–235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maida Y, Yasukawa M, Okamoto N, Ohka S, Kinoshita K, Totoki Y, Ito TK, Minamino T, Nakamura H, Yamaguchi S, Shibata T, Masutomi K (2014) Involvement of telomerase reverse transcriptase in heterochromatin maintenance. Mol Cell Biol 34:1576–1593

    Article  PubMed Central  PubMed  Google Scholar 

  • Majerska J, Sykorova E, Fajkus J (2011) Non-telomeric activities of telomerase. Mol Biosyst 7:1013–1023

    Article  CAS  PubMed  Google Scholar 

  • Masutomi K, Possemato R, Wong JM, Currier JL, Tothova Z, Manola JB, Ganesan S, Lansdorp PM, Collins K, Hahn WC (2005) The telomerase reverse transcriptase regulates chromatin state and DNA damage responses. Proc Natl Acad Sci USA 102:8222–8227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mukherjee S, Firpo EJ, Wang Y, Roberts JM (2011) Separation of telomerase functions by reverse genetics. Proc Natl Acad Sci USA 108:E1363–E1371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Niedenthal RK, Riles L, Johnston M, Hegemann JH (1996) Green fluorescent protein as a marker for gene expression and subcellular localization in budding yeast. Yeast 12:773–786

    Article  CAS  PubMed  Google Scholar 

  • Nozawa K, Maehara K, Isobe K (2001) Mechanism for the reduction of telomerase expression during muscle cell differentiation. J Biol Chem 276:22016–22023

    Article  CAS  PubMed  Google Scholar 

  • Ogur M, John St R, Nagai S (1957) Tetrazolium overlay technique for population studies of respiration deficiency in yeast. Science 125:928–929

    Article  CAS  PubMed  Google Scholar 

  • Park JI, Venteicher AS, Hong JY, Choi J, Jun S, Shkreli M, Chang W, Meng Z, Cheung P, Ji H, McLaughlin M, Veenstra TD, Nusse R, McCrea PD, Artandi SE (2009) Telomerase modulates Wnt signalling by association with target gene chromatin. Nature 460:66–72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perrault SD, Hornsby PJ, Betts DH (2005) Global gene expression response to telomerase in bovine adrenocortical cells. Biochem Biophys Res Commun 335:925–936

    Article  CAS  PubMed  Google Scholar 

  • Polcic P, Forte M (2003) Response of yeast to the regulated expression of proteins in the Bcl-2 family. Biochem J 374:393–402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rahman R, Latonen L, Wiman KG (2005) hTERT antagonizes p53-induced apoptosis independently of telomerase activity. Oncogene 24:1320–1327

    Article  CAS  PubMed  Google Scholar 

  • Sahin E, Colla S, Liesa M, Moslehi J, Muller FL, Guo M, Cooper M, Kotton D, Fabian AJ, Walkey C, Maser RS, Tonon G, Foerster F, Xiong R, Wang YA, Shukla SA, Jaskelioff M, Martin ES, Heffernan TP, Protopopov A, Ivanova E, Mahoney JE, Kost-Alimova M, Perry SR, Bronson R, Liao R, Mulligan R, Shirihai OS, Chin L, DePinho RA (2011) Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470:359–365

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Santos JH, Meyer JN, Skorvaga M, Annab LA, Van Houten B (2004) Mitochondrial hTERT exacerbates free-radical-mediated mtDNA damage. Aging Cell 3:399–411

    Article  CAS  PubMed  Google Scholar 

  • Santos JH, Meyer JN, Van Houten B (2006) Mitochondrial localization of telomerase as a determinant for hydrogen peroxide-induced mitochondrial DNA damage and apoptosis. Hum Mol Genet 15:1757–1768

    Article  CAS  PubMed  Google Scholar 

  • Saretzki G (2009) Telomerase, mitochondria and oxidative stress. Exp Gerontol 44:485–492

    Article  CAS  PubMed  Google Scholar 

  • Saretzki G (2014) Extra-telomeric functions of human telomerase: cancer, mitochondria and oxidative stress. Curr Pharm Des. doi:10.2174/1381612820666140630095606

    PubMed  Google Scholar 

  • Seimiya H, Sawada H, Muramatsu Y, Shimizu M, Ohko K, Yamane K, Tsuruo T (2000) Involvement of 14-3-3 proteins in nuclear localization of telomerase. EMBO J 19:2652–2661

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sharma NK, Reyes A, Green P, Caron MJ, Bonini MG, Gordon DM, Holt IJ, Santos JH (2012) Human telomerase acts as a hTR-independent reverse transcriptase in mitochondria. Nucleic Acids Res 40:712–725

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shin KH, Kang MK, Dicterow E, Kameta A, Baluda MA, Park NH (2004) Introduction of human telomerase reverse transcriptase to normal human fibroblasts enhances DNA repair capacity. Clin Cancer Res 10:2551–2560

    Article  CAS  PubMed  Google Scholar 

  • Shkreli M, Sarin KY, Pech MF, Papeta N, Chang W, Brockman SA, Cheung P, Lee E, Kuhnert F, Olson JL, Kuo CJ, Gharavi AG, D’Agati VD, Artandi SE (2012) Reversible cell-cycle entry in adult kidney podocytes through regulated control of telomerase and Wnt signaling. Nat Med 18:111–119

    Article  CAS  Google Scholar 

  • Sickmann A, Reinders J, Wagner Y, Joppich C, Zahedi R, Meyer HE, Schonfisch B, Perschil I, Chacinska A, Guiard B, Rehling P, Pfanner N, Meisinger C (2003) The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci USA 100:13207–13212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singhapol C, Pal D, Czapiewski R, Porika M, Nelson G, Saretzki GC (2013) Mitochondrial telomerase protects cancer cells from nuclear DNA damage and apoptosis. PLoS One 8:e52989

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith LL, Coller HA, Roberts JM (2003) Telomerase modulates expression of growth-controlling genes and enhances cell proliferation. Nat Cell Biol 5:474–479

    Article  CAS  PubMed  Google Scholar 

  • Storici F, Bebenek K, Kunkel TA, Gordenin DA, Resnick MA (2007) RNA-templated DNA repair. Nature 447:338–341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sung YH, Ali M, Lee HW (2014) Extracting extra-telomeric phenotypes from telomerase mouse models. Yonsei Med J 55:1–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taylor SD, Zhang H, Eaton JS, Rodeheffer MS, Lebedeva MA, O’Rourke TW, Siede W, Shadel GS (2005) The conserved Mec1/Rad53 nuclear checkpoint pathway regulates mitochondrial DNA copy number in Saccharomyces cerevisiae. Mol Cell Biol 16:3010–3018

    Article  CAS  Google Scholar 

  • Walther TC, Kennell JC (1999) Linear mitochondrial plasmids of F. oxysporum are novel, telomere-like retroelements. Mol Cell 4:229–238

    Article  CAS  PubMed  Google Scholar 

  • Wege H, Heim D, Lutgehetmann M, Dierlamm J, Lohse AW, Brummendorf TH (2011) Forced activation of beta-catenin signaling supports the transformation of hTERT-immortalized human fetal hepatocytes. Mol Cancer Res 9:1222–1231

    Article  CAS  PubMed  Google Scholar 

  • Westermann B, Neupert W (2000) Mitochondria-targeted green fluorescent proteins: convenient tools for the study of organelle biogenesis in Saccharomyces cerevisiae. Yeast 16:1421–1427

    Article  CAS  PubMed  Google Scholar 

  • Xiang H, Wang J, Mao Y, Liu M, Reddy VN, Li DW (2002) Human telomerase accelerates growth of lens epithelial cells through regulation of the genes mediating RB/E2F pathway. Oncogene 21:3784–3791

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Przyborski S, Cooke MJ, Zhang X, Stewart R, Anyfantis G, Atkinson SP, Saretzki G, Armstrong L, Lako M (2008) A key role for telomerase reverse transcriptase unit in modulating human embryonic stem cell proliferation, cell cycle dynamics, and in vitro differentiation. Stem Cells 26:850–863

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ladislav Kovac for inspiration and continuous support, H. Yde Steensma (Leiden University, The Netherlands) for the S. cerevisiae strain GG595, Johannes H. Hegemann (Heinrich-Heine-Universität, Düsseldorf, Germany) for the plasmid pUG35-yEGFP3, Ronald A. DePinho (University of Texas, USA) for the plasmid pGRN188, Juraj Kramara (Palacky University in Olomouc, Czech republic) for technical assistance and Jiri Bartek (Palacky University in Olomouc, Czech republic) for providing the possibility to perform fluorescent microscopy in his laboratory. We also thank two anonymous reviewers for their constructive comments, which helped us to improve the manuscript. This work was supported in part by the Slovak grant agencies APVV (0035-11 and 0123-10), VEGA (1/0311/12) and Comenius University (UK/409/2014) and National Institutes of Health Grants 2R01ES013773-06A1.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lubomir Tomaska.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3852 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonicova, L., Dudekova, H., Ferenc, J. et al. Saccharomyces cerevisiae as a model for the study of extranuclear functions of mammalian telomerase. Curr Genet 61, 517–527 (2015). https://doi.org/10.1007/s00294-014-0472-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-014-0472-8

Keywords

Navigation