Abstract
All organisms are constantly exposed to adverse environmental conditions including mechanical damage, which may alter various physiological aspects of growth, development and reproduction. In plant and animal systems, the damage response mechanism has been widely studied. Both systems posses a conserved and sophisticated mechanism that in general is aimed at repairing and preventing future damage, and causes dramatic changes in their transcriptomes, proteomes, and metabolomes. These damage-induced changes are mediated by elaborate signaling networks, which include receptors/sensors, calcium (Ca2+) influx, ATP release, kinase cascades, reactive oxygen species (ROS), and oxylipin signaling pathways. In contrast, our current knowledge of how fungi respond to injury is limited, even though various reports indicate that mechanical damage triggers reproductive processes. In fungi, the damage response mechanism has been studied more in depth in Trichoderma atroviride. Interestingly, these studies indicate that the mechanical damage response involves ROS, Ca2+, kinase cascades, and lipid signaling pathways. Here we compare the response to mechanical damage in plants, animals and fungi and provide evidence that they appear to share signaling molecules and pathways, suggesting evolutionary conservation across the three kingdoms.



Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Abbreviations
- ROS:
-
Reactive oxygen species
- FIS:
-
Fruiting inducing substances
- Nox:
-
NADPH oxidase
- MAPK:
-
Mitogen-activated protein kinase
- JA:
-
Jasmonic acid
- EGTA:
-
Ethylene glycol tetraacetic acid (extracellular Ca2+ chelating agent)
- PRR:
-
Pattern recognition receptors
- PAMP:
-
Pathogen-associated molecular patterns
- DAMP:
-
Damage-associated molecular patterns
- eATP:
-
Extracellular ATP
- PGE:
-
Prostaglandins
- PO:
-
Phenoloxidase
- JNK:
-
c-Jun N-terminal kinase
- WB:
-
Woronin body
- SO:
-
SOFT protein
- CDPK:
-
Calcium-dependent protein kinases
- CAMK:
-
Ca2+/calmodulin-dependent kinase
- CRZ:
-
Calcineurin-responsive zinc finger transcription factor
- H2O2 :
-
Hydrogen peroxide
- SIPK:
-
Salicylic acid-induced protein kinase
- WIPK:
-
Wound-induced protein kinase
- ERK:
-
Extracellular signal-regulated kinase
- MeJA:
-
Methyl jasmonate
- PCD:
-
Programed cell death
- α-Dox:
-
α-Dioxygenase
References
Aguirre J, Lambeth DJ (2010) Nox enzymes from fungus to fly to fish and what they tell us about Nox function in mammals. Free Radic Biol Med 49:1342–1353. doi:10.1016/j.freeradbiomed.2010.07.027
Aguirre J, Rodríguez R, Hansberg W (1989) Oxidation of Neurospora crassa NADP-specific glutamate dehydrogenase by activated oxygen species. J Bacteriol 171(11):6243–6250 (pii 0021-9193/89/116243-08)
Aguirre J, Rios-Momberg M, Hewitt D, Hansberg W (2005) Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol 13(3):111–118. doi:10.1016/j.tim.2005.01.007
Aguirre J, Hansberg W, Navarro R (2006) Fungal responses to reactive oxygen species. Med Mycol 44:5101–5107. doi:10.1080/13693780600900080
Arimura GI, Maffei ME (2010) Calcium and secondary CPK signaling in plants in response to herbivore attack. Biochem Biophys Res Commun 400:455–460. doi:10.1016/j.bbrc.2010.08.134
Arimura GI, Ozawa R, Maffei ME (2011) Recent Advances in plant early signaling in response to herbivory. Int J Mol Sci 12:3723–3739. doi:10.3390/ijms12063723
Asai S, Ohta K, Yoshioka H (2008) MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana. Plant Cell 20(5):1390–1406. doi:10.1105/tpc.107.055855
Bachstetter AD, Rowe RK, Kaneko M, Goulding D, Lifshitz J, Van Eldik LJ (2013) The p38α MAPK regulates microglial responsiveness to diffuse traumatic brain injury. J Neurosci 33(14):6143–6153. doi:10.1523/JNEUROSCI.5399-12.2013
Bahn YS, Xue C, Idnurm A, Rutherford JC, Heitman J, Cardenas ME (2007) Sensing the environment: lessons from fungi. Nat Rev Microbiol 5(1):57–69. doi:10.1038/nrmicro1578
Bement WM, Mandato CA, Kirsch MN (1999) Wound-induced assembly and closure of an actomyosin purse string in Xenopus oocytes. Curr Biol 9(11):579–587. doi:10.1016/S0960-9822(99)80261-9
Bostock RM, Stermer BA (1989) Perspective on wound-healing in resistance to pathogens. Annu Rev Phytopathol 27:343–371. doi:10.1146/annurev.py.27.090189.002015
Braam J (1992) Regulation of expression of calmodulin and calmodulin-related genes by environmental stimuli in plants. Cell Calcium 13:457–463. doi:10.1016/0143-4160(92)90058-Z
Casas-Flores S, Rios-Momberg M, Bibbins M, Ponce-Noyola P, Herrera-Estrella A (2004) BLR-1 and BLR-2 are key regulatory elements for photoconidiation and mycelial grown in T. atroviride. Microbiology 150:3561–3569. doi:10.1099/mic.0.27346-0
Chang C, Wu P, Baker RE, Maini PK, Alibardi L, Chuong CM (2009) Reptile scale paradigm: Evo-Devo, pattern formation and regeneration. Int J Dev Biol 53(5–6):813–826. doi:10.1387/ijdb.072556cc
Chang MC, Chen YJ, Lee MY, Lin LD, Wang TM, Chan CP, Tsai YL, Wang CY, Lin BR, Jeng JH (2010) Prostaglandin F2a stimulates MEK/ERK signaling but decreases the expression of alkaline phosphatase in dental pulp cells. Int Endod J 43:461–468. doi:10.1111/j.1365-2591.2010.01699.x
Chauhan N, Latge JP, Calderone R (2006) Signalling and oxidant adaptation in Candida albicans and Aspergillus fumigatus. Nat Rev Microbiol 4:435–444. doi:10.1038/nrmicro1426
Chen GY, Nuñez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10:826–837. doi:10.1038/nri2873
Clark AG, Miller AL, Vaughan E, Yu HYE, Penkert R, Bement WM (2009) Integration of single and multicellular wound responses. Curr Biol 19(16):1389–1395. doi:10.1016/j.cub.2009.06.044
Cole GT (1986) Models of cell differentiation in conidial fungi. Microbiol Rev 50(2):95–132 (PMCID: PMC373060)
Crosby LM, Waters CM (2010) Epithelial repair mechanisms in the lung. Am J Physiol Lung Cell Mol Physiol 298:715–731. doi:10.1152/ajplung.00361.2009
Curach NC, Te’o Valentino SJ, Gibbs MD, Bergquist PL, Nevalainen KMH (2004) Isolation, characterization and expression of the hex1 gene from Trichoderma reesei. Gene 331:133–140. doi:10.1016/j.gene.2004.02.007
Das DK, Maulik N (2004) Conversion of death signal into survival signal by redox signaling. Biochemistry (Mosc) 69(1):16–24. doi:10.1023/B:BIRY.0000016345.19027.54
De Oliveira S, López-Muñoz A, Candel S, Pelegrín P, Calado A, Mulero V (2014) ATP modulates acute inflammation in vivo through dual oxidase 1-derived H2O2 production and NF-κB activation. J Immunol 192:5710–5719. doi:10.4049/jimmunol.1302902
Delgado-Jarana J, Sousa S, González F, Rey M, Llobell A (2006) The Hog1 controls the hyperosmotic stress response in Trichoderma harzianum. Microbiology 152:1687–1700. doi:10.1099/mic.0.28729-0
Dhondt S, Geoffroy P, Stelmach BA, Legrand M, Heitz T (2000) Soluble phospholipase A2 activity is induced before oxylipin accumulation in tobacco mosaic virus-infected tobacco leaves and is contributed by patatin-like enzymes. Plant J 23:431–440. doi:10.1046/j.1365-313x.2000.00802.x
Dombrowski JE, Hind SR, Martin RC, Stratmann JW (2011) Wounding systemically activates a mitogen-activated protein kinase in forage and turf grasses. Plant Sci 180:686–693. doi:10.1016/j.plantsci.2011.01.010
Farmer EE, Alméras E, Krishnamurthy V (2003) Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr Opin Plant Biol 6(4):372–378. doi:10.1016/S1369-5266(03)00045-1
Fester T, Hause G (2005) Accumulation of reactive oxygen species in arbuscular mycorrhizal roots. Mycorrhiza 15:373–379. doi:10.1007/s00572-005-0363-4
Fleiβner A, Glass NL (2007) SO, a protein involved in hyphal fusion in Neurospora crassa, localizes to septal plugs. Eukaryot cell 6(1):84–94. doi:10.1128/EC.00268-06
Gailit J, Clark RA (1994) Wound repair in the context of extracellular matrix. Curr Opin Cell Biol 6(5):717–725. doi:10.1016/0955-0674(94)90099-X
Gfeller A, Liechti R, Farmer EE (2010) Arabidopsis jasmonate signaling pathway. Sci Signal 3(109):cm4. doi:10.1126/scisignal.3109cm4
Gfeller A, Baerenfaller K, Loscos J, Chételat A, Baginsky S, Farmer EE (2011) Jasmonate controls polypeptide patterning in undamaged tissue in wounded Arabidopsis leaves. Plant Physiol 156(4):1797–1807. doi:10.1104/pp.111.181008
Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453(7193):314–321. doi:10.1038/nature07039
Hagiwara D, Mizuno T, Abe K (2009) Characterization of NikA histidine kinase and two response regulators with special reference to osmotic adaptation and asexual development in Aspergillus nidulans. Biosci Biotechnol Biochem 73(7):1566–1571. doi:10.1271/bbb.90063
Hegedüs N, Sigl C, Zadra I, Pócsi I, Marx F (2011) The paf gene product modulates asexual development in Penicillium chrysogenum. J Basic Microbiol 51:253–262. doi:10.1002/jobm.201000321
Heil M (2009) Damaged-self recognition in plant herbivore defense. Trends Plant Sci 14:356–363. doi:10.1016/j.tplants.2009.04.002
Heil M (2012) Damaged-self recognition as a general strategy for injury detection. Plant Signal Behav 7(5):576–580. doi:10.4161/psb.19921
Heil M, Ibarra-Laclette E, Adame-Álvarez RM, Martínez O, Ramirez-Chávez E, Molina- Torres J, Herrera-Estrella L (2012) How plants sense wounds: damaged-self recognition is based on plant-derived elicitors and induces octadecanoid signaling. PLoS One 7:e30357. doi:10.1371/journal.pone.0030537
Henis Y, Chet I, Avizohar-Hershenzon Z (1965) Nutritional and mechanical factors involved in mycelial growth and production of Sclerotial by Sclerotium rolfsii in artificial medium and amended soil. Phytopathol 55:87–91
Hernández-Oñate MA, Esquivel-Naranjo EU, Mendoza-Mendoza A, Stewart A, Herrera- Estrella AH (2012) An injury-response mechanism conserved across kingdoms determines entry of the fungus Trichoderma atroviride into development. Proc Natl Acad Sci USA 109:14918–14923. doi:10.1073/pnas.1209396109
Jaffe LF (2010) Fast calcium waves. Cell Calcium 48:102–113. doi:10.1016/j.ceca.2010.08.007
Jang HS, Han SJ, Kim JI, Lee S, Lipschutz JH, Park KM (2013) Activation of ERK accelerates repair of renal tubular epithelial cells, whereas it inhibits progression of fibrosis following ischemia/reperfusion injury. Biochim Biophys Acta Mol Basis Dis 1832:1998–2008. doi:10.1016/j.bbadis.2013.07.001
Jedd G (2011) Fungal evo-devo: organelles and multicellular complexity. Trends Cell Biol 21(1):12–19. doi:10.1016/j.tcb.2010.09.001
Jedd G, Chua N-H (2000) A new self-assembled peroxisomal vesicle required for efficient resealing of the plasma membrane. Nat Cell Biol 2:226–231. doi:10.1038/35008652
Jendretzki A, Winttland J, Wilk S, Straede A, Heinisch JJ (2011) How do I begin? Sensing extracellular stress to maintain yeast cell wall integrity. Eur J Cell Biol 90(9):740–744. doi:10.1016/j.ejcb.2011.04.006
Jiang F, Zhang Y, Dusting GJ (2011) NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev 63(1):218–242. doi:10.1124/pr.110.002980
Juvvadi PR, Maruyama JI, Kitamoto K (2007) Phosphorilation of the Aspergillus oryzae Woronin body protein, AoHex1, by protein kinase C: evidence for its role in the multimerization and proper localization of the Woronin body protein. Biochem J 405:533–540. doi:10.1042/BJ20061678
Kandoth PK, Ranf S, Pancholi SS, Jayanty S, Walla MD, Miller W, Howe GA, Lincoln DE, Stratmann JW (2007) Tomato MAPKs LeMPK1, LeMPK2, and LeMPK3 function in the systemin-mediated defense response against herbivorous insects. Proc Natl Acad Sci USA 104(29):12205–12210. doi:10.1073/pnas.0700344104
Kawate T, Michel JC, Birdsong WT, Gouaux E (2009) Crystal structure of the ATP-gated P2X(4) ion channel in the closed state. Nature 460:592–598. doi:10.1038/nature08198
Kim M, McGinnis W (2011) Phosphorylation of grainy head by ERK is essential for wound-dependent regeneration but not for development of an epidermal barrier. Proc Natl Acad Sci USA 108:650–655. doi:10.1073/pnas.1016386108
Kim CY, Liu Y, Thorne ET, Yang H, Fukushige H, Gassmann W, Hildebrand D, Sharp RE, Zhang S (2003) Activation of a stress-responsive mitogen-activated protein kinase cascade induces the biosynthesis of ethylene in plants. Plant Cell 15:2707–2718. doi:10.1105/tpc.011411
Kobayashi M, Ohura I, Kawakita K, Yokota N, Fujiwara M, Shimamoto K, Doke N, Yoshioka H (2007) Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell 19(3):1065–1080. doi:10.1105/tpc.106.048884
Koo AJK, Howe GA (2009) The wound hormone jasmonate. Phytochem 70(13–14):1571–1580. doi:10.1016/j.phytochem.2009.07.018
Koo AJ, Gao X, Daniel Jones A, Howe GA (2009) A rapid wound signal activates the systemic synthesis of bioactive jasmonates in Arabidopsis. Plant J 59(6):974–986. doi:10.1111/j.1365-313X.2009.03924.x
Kurashima Y, Amiya T, Nochi T, Fujisawa K, Haraguchi T, Iba H, Tsutsui H, Sato S, Nakajima S, Iijima H, Kubo M, Kunisawa J, Kiyono H (2012) Extracellular ATP mediates mast cell-dependent intestinal inflammation through P2X7 purinoceptors. Nat Commun 3:1034. doi:10.1038/ncomms2023
Kurusu T, Yagala T, Miyao A, Hirochika H, Kuchitsu K (2005) Identification of a putative voltage-gated Ca2+ channel as a key regulator of elicitor-induced hypersensitive cell death mitogen-activated protein kinase activation in rice. Plant J 42(6):798–809. doi:10.1111/j.1365-313X.2005.02415.x
Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Ann Rev Plant Physiol Plant Mol Biol 48(1):251–275. doi:10.1146/annurev.arplant.48.1.251
Land WG (2013) Transfusion-related acute lung injury: the work of DAMPs. Transfus Med Hemother 40(1):3–13. doi:10.1159/000345688
Land WG, Messmer K (2012) The danger theory in view of the injury hypothesis: 20 years later. Front Immunol 3:349. doi:10.3389/fimmu.2012.00349
Lara-Rojas F, Sánchez O, Kawasaki L, Aguirre J (2011) Aspergillus nidulans transcription factor AtfA interacts with the MAPK SakA to regulate general stress responses, development spore functions. Mol Microbiol 80(2):436–454. doi:10.1111/j.1365-2958.2011.07581.x
Leiter É, Szappanos H, Oberparleiter C, Kaiserer L, Csernoch L, Pusztahelyi T, Emri T, Pócsi I, Salvenmoser W, Marx F (2005) Antifungal protein PAF severely affects the integrity of the plasma membrane of Aspergillus nidulans induces an apoptosis-like phenotype. Antimicrob Agents Chemother 49(6):2445–2453. doi:10.1128/AAC.49.6.2445-2453.2005
Leitner M, Boland W, Mithöfer A (2005) Direct indirect defences induced by piercing-sucking chewing herbivores in Medicago truncatula. New Phytol 167:597–606. doi:10.1111/j.1469-8137.2005.01426.x
León J, Rojo E, Sánchez-Serrano JJ (2001) Wound signaling in plants. J Exp Bot 52(354):1–9. doi:10.1093/jexbot/52.354.1
Leonard TJ, Dick S (1968) Chemical induction of haploid fruiting bodies in Schizophyllum commune. Proc Natl Acad Sci USA 59:745–751 (PMCID: PMC224738)
Leonard TJ, Dick S (1973) Induction of haploid fruiting by mechanical injury in Schizophyllum commune. Mycol 65:809–822. http://www.jstor.org/stable/3758520
Leonard TJ, Raper JR (1969) Schizophyllum commune: gene controlling induced haploid fruiting. Science 165:190. doi:10.1126/science.165.3889.190
Li M, Guo W, Zhang P, Li H, Gu X, Yao D (2013) Signal flow pathways in response to early Wallerian degeneration after rat sciatic nerve injury. Neurosci Lett 536:56–63. doi:10.1016/j.neulet.2013.01.008
Liu F, Ng Kah, Seng LuY, Low W, Lai J, Jedd G (2008) Making two organelles from one: Woronin body biogenesis by peroxisomal protein sorting. J Cell Biol 180(2):325–339. doi:10.1083/jcb.200705049
Liu F, Lu Y, Pieuchot L, Dhavale T, Jedd G (2011) Import oligomers induce positive feedback to promote peroxisome differentiation control organelle abundance. Dev Cell 21(3):457–468. doi:10.1016/j.devcel.2011.08.004
Lulai EC, Corsini DL (1998) Differential deposition of suberin phenolic aliphatic domains their roles in resistance to infection during potato tuber (Solanum tuberosumL.) wound-healing. Physiol Mol Plant Pathol 53(4):209–222. doi:10.1006/pmpp.1998.0179
Maffei M, Bossi S, Spiteller D, Mithöfer A, Boland W (2004) Effects of feeding Spodoptera littoralis on lima bean leaves. I. Membrane potentials, intracellular calcium variations, oral secretions, regurgitate components. Plant Physiol 134(4):1752–1762. doi:10.1104/pp.103.034165
Markham P (1994) Occlusions of septal pores in filamentous fungi. Mycol Res 98(10):1089–1106. doi:10.1016/S0953-7562(09)80195-0
Martin P, Leibovich SJ (2005) Inflammatory cells during wound repair: the good, the bad the ugly. Trends Cell Biol 15(11):599–607. doi:10.1016/j.tcb.2005.09.002
Maruyama JI, Juvvadi PR, Ishi K, Kitamoto K (2005) Three-dimensional image analysis of plugging at the septal pore by Woronin body during hypotonic shock inducing hyphal tip bursting in the filamentous fungus Aspergillus oryzae. Biochem Biophys Res Commun 331:1081–1088. doi:10.1016/j.bbrc.2005.03.233
McCord JM (2000) The evolution of free radicals oxidative stress. Am J Med 108(8):652–659. doi:http://dx.doi.org/10.1016/S0002-9343(00)00412-5
Medders KE, Kaul M (2011) Mitogen-activated protein kinase p38 in HIV infection associated brain injury. J Neuroimmune Pharmacol 6(2):202–215. doi:10.1007/s11481-011-9260-0
Medina-Castellanos E, Esquivel-Naranjo EU, Heil M, Herrera-Estrella A (2014) Extracellular ATP activates MAPK and ROS signaling during injury response in the fungus Trichoderma atroviride. Front Plant Sci 5:659. doi:10.3389/fpls.2014.00659
Mendoza-Mendoza A, Pozo MJ, Grzegorski D, Martínez P, García JM, Olmedo-Monfil V, Cortés C, Kenerley C, Herrera-Estrella A (2003) Enhanced biocontrol activity of Trichoderma through inactivation of a mitogen-activated protein kinase. Proc Natl Acad Sci USA 100(26):15965–15970. doi:10.1073/pnas.2136716100
Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shualaev V, Dangl JL, Mittler R (2009) The plant NADPH oxidase RBOHD mediated rapid systemic signaling in response to diverse stimuli. Sci Signal 2:ra45. doi:10.1126/scisignal.2000448
Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Breusegem FV (2011) ROS signaling: the new wave? Trends Plant Sci 16(6):300–309. doi:10.1016/j.tplants.2011.03.007
Momany M, Richardson EA, Van Sickle C, Jedd G (2002) Mapping Woronin body position in Aspergillus nidulans. Mycol 94(2):260–266
Mosblech A, Feussner I, Heilmann I (2010) Oxylipin signaling plant growth. In: Munnik T (ed) Lipid signaling in plants, series: plant cell monographs, vol 16, pp 277–291. Springer, Berlin
Müller WH, Montijn RC, Humbel BM, van Aelst AC, Boon EJ, van der Krift TP, Boekhout T (1998) Structural differences between two types of basidiomycete septal pore caps. Microbiol 144:1721–1730. doi:10.1099/00221287-144-7-1721
Nam HJ, Jang IH, You H, Lee KA, Lee WJ (2012) Genetic evidence of a redox-dependent systemic wound response via Hayan protease-phenoloxidase system in Drosophila. EMBO J 31(5):1253–1265. doi:10.1038/emboj.2011.476
Nelson G, Kozlova-Zwinderman O, Collis AJ, Knight MR, Fincham JRS, Stanger CP, Hessing JGM, Punt PJ, van den Hondel CAMJ, Read ND (2004) Calcium measurement in living filamentous fungi expressing codon-optimized aequorin. Mol Microbiol 52(5):1437–1450. doi:10.1111/j.1365-2958.2004.04066.x
Noordermeer MA, Veldink GA, Vliegenthart JF (2001) Fatty acid hydroperoxide lyase: a plant cytochrome p450 enzyme involved in wound healing pest resistance. ChemBioChem 2(7–8):494–504. doi:10.1002/1439-7633(20010803)2:7/8<494:AID-CBIC494>3.0.CO;2-1
Noverr MC, Erb-Downward JR, Huffnagle GB (2003) Production of eicosanoids other oxylipins by pathogenic eukaryotic microbes. Clin Microbiol Rev 16(3):517–533. doi:10.1128/CMR.16.3.517-533.2003
Orozco-Cardenas M, Ryan CA (1999) Hydrogen peroxide is generated systemically in plant leaves by wounding systemin via the octadecanoid pathway. Proc Natl Acad Sci USA 96(11):6553–6557. doi:10.1073/pnas.96.11.6553
Orozco-Cárdenas ML, Narváez-Vásquez J, Ryan CA (2001) Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, methyl jasmonate. Plant Cell 13(1):179–191. doi:10.1105/tpc.13.1.179
Phillips L, Leonard TJ (1976) Extracellular intracellular phenoloxidase activity during growth development in Schizophyllum. Mycology 68:268–276. http://www.jstor.org/stable/3758998
Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MAK (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12(3):98–105. doi:10.1016/j.tplants.2007.01.004
Rämet M, Lanot R, Zachary D, Manfruelli P (2002) JNK signaling pathway is required for efficient wound healing in Drosophila. Dev Biol 241:145–156. doi:10.1006/dbio.2001.0502
Reithner B, Schuhmacher R, Stoppacher N, Pucher M, Brunner K, Zeilinger S (2007) Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk1 differentially affects mycoparasitism plant protection. Fungal Genet Biol 44:1123–1133. doi:10.1016/j.fgb.2007.04.001
Rodríguez-Peña JM, García R, Nombela C, Arroyo J (2010) The high-osmolarity glycerol (HOG) cell wall integrity (CWI) signalling pathways interplay: a yeast dialogue between MAPK routes. Yeast 27(8):495–502. doi:10.1002/yea.1792
Romeis T, Piedras P, Zhang S, Klessig DF, Hirt H, Jones JD (1999) Rapid Avr9-Cf-9-dependent activation of MAP kinases in tobacco cell cultures leaves: convergence of resistance gene, elicitor, wound, salicylate responses. Plant Cell Online 11(2):273–287. doi:10.1105/tpc.11.2.273
Roncal T, Ugalde U (2003) Conidiation induction in Penicillium. Res Microbiol 154:539–546. doi:10.1016/S0923-2508(03)00168-2
Rusmin S, Leonard TJ (1978) Biochemical induction of fruiting in Schyzophyllum. Plant Physiol 61:538–543. doi:10.1104/pp.61.4.538
Sagi M, Davydov O, Orazova S, Yesbergenova Z, Ophir R, Stratmann JW, Fluhr R (2004) Plant respiratory burst oxidase homologs impinge on wound responsiveness development in Lycopersicon esculentum. Plant Cell 16(3):616–628. doi:10.1105/tpc.019398
Sasaki H, Yamamoto H, Tominaga K, Masuda K, Kawai T, Teshima-Kondo S, Rokutan K (2009) NADPH oxidase-derived reactive oxygen species are essential for differentiation of a mouse macrophage cell line (RAW264.7) into osteoclasts. J Med Invest 56(1–2):33–41. doi:10.2152/jmi.56.33
Schilmiller AL, Howe GA (2005) Systemic signaling in the wound response. Curr Opin Plant Biol 8:369–377. doi:10.1016/j.pbi.2005.05.008
Seo S, Katou S, Seto H, Gomi K, Ohashi Y (2007) The mitogen-activated protein kinases WIPK SIPK regulate the levels of jasmonic salicylic acids in wounded tobacco plants. Plant J 49(5):899–909. doi:10.1111/j.1365-313X.2006.03003.x
Sherwood CL, Lantz RC, Burgess JL, Boitano S (2011) Arsenic alters ATP-dependent Ca2+ signaling in human airway epithelial cell wound response. Toxicol Sci 121:191–206. doi:10.1093/toxsci/kfr044
Steyaert JM, Weld RJ, Mendoza-Mendoza A, Stewart A (2010) Reproduction without sex: conidiation in the filamentous fungus Trichoderma. Microbiology 156:2887–9000. doi:10.1099/mic.0.041715-0
Steyaert JM, Weld RJ, Mendoza-Mendoza A, Krystofová S, Simkovic M, Varecka L, Stewart A (2013) Asexual development in Trichoderma: conidia to Chlamydospores. In: Mukherjee P, Horwitz BA, Singh US, Mukherjee M, Schmoll M (eds) Trichoderma: biology and applications. CABI, Oxforshire, pp 87–109
Taj G, Agarwal P, Grant M, Kumar A (2010) MAPK machinery in plants: recognition response to different stresses through multiple signal transduction pathways. Plant Signal Behav 5(11):1370–1378. doi:10.4161/psb.5.11.13020
Takemoto D, Tanaka A, Scott B (2006) A p67phox-like regulator is recruited to control hyphal branching in a fugal-grass mutualistic symbiosis. Plant Cell 18:2807–2821. doi:10.1105/tpc.106.046169
Takemoto D, Tanaka A, Scott B (2007) NADPH oxidases in fungi: diverse roles of reactive oxygen species in fungal cellular differentiation. Fungal Genet Biol 44:1065–1076. doi:10.1016/j.fgb.2007.04.011
Takemoto D, Kamakura S, Saikia S, Becker Y, Wrenn R, Tanaka A, Sumimoto H, Scott B (2011) Polarity proteins Bem1 and Cdc24 are components of the filamentous fungal NADPH oxidase complex. Proc Natl Acad Sci USA 108(7):2861–2866. doi:10.1073/pnas.1017309108
Takeuchi O, Akira S (2010) Pattern recognition receptors inflammation. Cell 140:805–820. doi:10.1016/j.cell.2010.01.022
Tenney K, Hunt I, Sweigard J, Pounder IJ, McClain C, Bowman JE, Bowman JB (2000) Hex-1, a gene unique to filamentous fungi, encodes the major protein of the Woronin body functions as a plug for septal pores. Fungal Genet Biol 31:205–217. doi:10.1006/fgbi.2000.1230
Tey WK, North AJ, Lu YF, Jedd G (2005) Polarized gene expression determines Woronin body formation at the leading edge of the fungal colony. Mol Biol Cell 16(6):2651–2659. doi:10.1091/mbc.E04-10-0937
Torres MA, Dangl JL, Jones JD (2002) Arabidopsis gp91phox homologues AtrbohD AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci USA 99(1):517–522. doi:10.1073/pnas.012452499
Torres J, Rivera A, Clark G, Roux SJ (2008) Participation of extracellular nucleotides in the wound response of Dasycladus vermicularis and Acetabularia acetabulum (Dasycladales and Chlorophyta). J Phycol 44:1504–1511. doi:10.1111/j.1529-8817.2008.00602.x
Tsitsigiannis DI, Keller NP (2007) Oxylipins as developmental host-fungal communication signals. Trends Microbiol 15(3):109–118. doi:10.1016/j.tim.2007.01.005
Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA, Baylin SB (2003) Hedgehog signalling within airway epithelial progenitors in small-cell lung cancer. Nature 422:313–317. doi:10.1038/nature01493
White SR, Tse R, Marroquin BA (2005) Stress-activated protein kinases mediate cell migration in human airway epithelial cells. Am J Respir Cell Mol Biol 32:301–310. doi:10.1165/rcmb.2004-0118OC
Wu J, Baldwin IT (2010) New insights into plant responses to the attack from insect herbivores. Annu Rev Genet 44:1–24. doi:10.1146/annurev-genet-102209-163500
Wu J, Hettenhausen C, Meldau S, Baldwin IT (2007) Herbivory rapidly activates MAPK signaling in attacked and unattacked leaf regions but not between leaves of Nicotiana attenuata. Plant Cell 19(3):1096–1122. doi:10.1105/tpc.106.049353
Yoo SK, Huttenlocher A (2009) Innate Immunity: wounds burst H2O2 signals to leukocytes. Curr Biol 19(14):553–555. doi:10.1016/j.cub.2009.06.025
Yuan P, Jedd G, Kumaran D, Swaminathan S, Shio H, Hewitt D, Chua AH, Swaminathan K (2003) A Hex-1 crystal lattice required for Woronin body function in Neurospora crassa. Nat Struct Biol 10(4):264–270. doi:10.1038/nsb910
Zeilinger S, Omann M (2007) Trichoderma biocontrol: signal transduction pathways involved in host sensing mycoparasitism. Gene Regul Syst Biol 1:227–234 (PMCID: PMC2759141)
Zeiser R, Penack O, Holler E, Idzko M (2011) Danger signals activating innate immunity in graft-versus-host disease. J Mol Med 89:833–845. doi:10.1007/s00109-011-0767-x
Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K, Hauser CJ (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464(7285):104–107. doi:10.1038/nature08780
Zhao Z, Liu N, Huang J, Lu PH, Xu XM (2011) Inhibition of cPLA2 activation by Ginkgo biloba extract protects spinal cord neurons from glutamate excitotoxicity oxidative stress-induced cell death. J Neurochem 116:1057–1065. doi:10.1111/j.1471-4159.2010.07160.x
Zimmerman ZA, Kellogg DR (2001) The Sda1 protein is required for passage through start. Mol Biol Cell 12:201–219. doi:10.1091/mbc.12.1.201
Zorov DB, Bannikova SY, Belousov VV, Vyssokikh MY, Zorova LD, Isaev NK, Krasnikov BFY, Plotnikov E (2005) Reactive oxygen nitrogen species: friends or foes? Biochemistry (Mos) 70(2):215–221. doi:10.1007/s10541-005-0103-6
Acknowledgments
Research related to the main subject of this review is supported by grant FOINS-CONACYT (I0110/193/10FON.INST. -30-10) to A H-E. This review article was supported in part by a grant from São Paulo Research Foundation (FAPESP) of Brazil # 2014/01229-4. The authors wish to thank Dr. Ana Calvo for allowing us to use an unpublished photograph obtained by her research group.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by D. E. N. Rangel.
This article is part of the Special Issue “Fungal Stress Responses”.
Rights and permissions
About this article
Cite this article
Hernández-Oñate, M.A., Herrera-Estrella, A. Damage response involves mechanisms conserved across plants, animals and fungi. Curr Genet 61, 359–372 (2015). https://doi.org/10.1007/s00294-014-0467-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00294-014-0467-5


